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a b s t r a c t

For revenue optimization problems in the literature on revenue management, supply chain management,
and queueing systems, some assumptions (such as concavity of revenue functions or increasing
generalized failure rate) are often needed to ensure the problems to be analytically tractable. We show
that these assumptions are not necessary. For this, we present and study a parametric revenue
maximization problem to unify some problems in the literature. Without the usual assumptions, we
transform the problem into an equivalent one where the revenue function is increasing, continuous and
concave. We then apply the transformation method to a continuous time revenue management problem
and conclude that the monotone results are robust to demand function and allowable price set. Also, we
apply the transformation method to study a parametric cost minimization problem. We further apply our
method to two optimal control problems in queueing systems and an inventory control problem in a
supply chain with price-only contract.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Revenue maximization problems appear frequently in the
literature, typically those on revenue management (Gallego and
van Ryzin, 1994), optimality of queueing systems (Lippman, 1975)
and supply chain management (Lariviere and Porteus, 2001).
To ensure these problems to be analytically tractable there often
needs some assumptions. Ziya et al. (2004) summarize and discuss
three famous assumptions presented in the literature. The first
two are the concavity of the revenue function with demand and
price, respectively, and the third is the increasing generalized
failure rate (IGFR) of the demand distribution function under
which the revenue function is unimodal. Ziya et al. (2004) show
that none of these assumptions implies any other. These assump-
tions appear in papers concerning revenue management, inven-
tory and pricing in supply chain management, network services,
auction and mechanism design, and price competition (Ziya et al.,
2004). However, we no longer need these assumptions, as shown
in this paper.

We first present a parametric revenue maximization problem
to unify several revenue maximization problems discussed in the
literature. Without the assumptions presented in the literature, we
transform the problem into an equivalent well structured one in

which the revenue function is increasing, continuous and concave.
Thus, the resulting maximization problem is analytically tractable.
The transformation here is algorithmic. We illustrate the problem
and the results by an optimal arrival control in queueing systems,
which is not concerned in Ziya et al. (2004).

We then apply the transformation to study the continuous time
revenue management. Revenue management deals with pricing
and allocation problems in many industries of selling fixed stock
items over a finite horizon by controlling price. These industries
include airlines selling seats before planes' departing, hotels'
renting rooms before midnight, and retailers' selling seasonal
items with long procurement lead time. The study on revenue
management dates back to Littlewood (1972) for a stochastic two-
fare and single-leg problem in the airlines. Li (1988) presents a
continuous time model with demand of a controlled Poisson
process. Gallego and van Ryzin (1994) study continuous time
revenue management, where demands (customers) arrive accord-
ing to a homogeneous Poisson process with price related demand
rate, and price is chosen from the set ½0;1Þ. They assume a regular
demand function, that is, the corresponding revenue function
(i.e., the demand rate times price) is a continuous, bounded and
concave function of the demand rate, and tends to zero as the
demand rate tends to zero. With the regular demand function,
they show monotonicity and concavity of the optimal expected
revenue and monotonicity of the optimal pricing policy.

The work of Gallego and van Ryzin (1994) has been extended
into several directions: (1) to relax the assumption of the regular
demand, for example, in Zhao and Zheng (2000) and Wei and
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Hu (2002); (2) to extend the allowable price set to a discrete set,
for example, in Chatwin (2000), Feng and Xiao (2000a, 2000b),
and Feng and Gallego (2000); (3) to study the revenue manage-
ment problems in network environments, for example, in Ge et al.
(2010), Dai et al. (2005), Graf and Kimms (2013); (4) to study the
multi-period revenue management, for example, in Talluri and
van Ryzin (2004) and Du et al. (2005); and (5) to study the
revenue management in competitive environments, for example,
in Netessine and Shumsky (2005), Hu et al. (2010), Huang et al.
(2013), and Wei et al. (2013).

We apply the transformation to study a continuous time
revenue management problem along the first and second direc-
tions pointed above. With a general demand function (that may be
neither decreasing nor concave) and an arbitrary allowable price
set (that can be, e.g., an interval, a discrete set, or even combina-
tion of intervals and discrete points), we show that the problem
can be transformed into an equivalent one, where the revenue
function is continuous and concave (i.e., the corresponding
demand function is regular) and increasing. Thus, directly citing
the results in the literature, e.g., Gallego and van Ryzin (1994) and
Wei and Hu (2002), we get the usual monotone properties of the
optimal policies and the concavity of the optimal value function.
Hence, these monotone properties are robust to demand function
and allowable price set.

The supply chain management is also an area concerning the
revenue maximization problems. Lariviere and Porteus (2001)
study a simple price-only contract where the manufacturer
decides a wholesale price first and then the retailer decides an
order quantity based on a random demand. The problem faced by
the manufacturer is complex. Under IGFR, they show that the
revenue function of the manufacturer is unimodal and then an
optimal solution can be obtained analytically. We re-study the
problem above and show that the manufacturer's problem can be
solved analytically without IGFR.

We extend the transformation method to study a parametric
cost minimization problem and get an equivalent one where the
cost function is increasing, continuous and convex. A typical
application of the cost minimization problem is the optimal
control of service rate in queueing systems. As said in Stidham
(2002), the Lippman device (Lippman, 1975) opened the gates for
the application of Markov decision processes theory to queueing
control problems. The idea of the Lippman device is to transform
the underlying Markov process into an equivalent one in which
the times between transitions are exponential random variables
with a constant parameter. By applying his device, Lippman (1975)
studies the optimization problems in exponential queueing sys-
tems. Later, for the optimal control problem of arrivals, Helm and
Waldmenn (1984) study a general framework with multi-server
queues in a random environment. For the optimal control of
service rate, Jo and Stidham (1983) study the optimization
problems in M=G=1. Stidham and Weber (1989) consider the
problem of controlling the service and/or arrival rates in queues,
with the objectives of minimizing the total expected cost to reach
state zero and average-cost minimization over an infinite horizon.
They prove that an optimal policy is monotonic in the number of
customers in the system. See the details in survey papers
(Stidham, 1985, 2002). However, in the literature, the analytical
tractability of the optimization problems is not concerned, though
is very important in computing optimal policies. Applying the
transformation method, we solve the analytical tractability for an
optimal service rate control in queueing systems.

The rest of the paper is organized as follows. In Section 2, we
present the model of a parametric revenue maximization problem
and transform it into an equivalent well structured one with a
regular revenue function. Then in Section 3, we apply the transfor-
mation to study a continuous time revenue management problem

without assumptions on the demand function. In Section 4, we apply
the transformation method to re-study a supply chain with price-
only contract. In Section 5, we generalize the transformation method
to study a cost minimization problem and apply it to an optimization
problem in queueing systems. Section 6 is a concluding section.

2. Parametric revenue maximization problem

In this section, we first present the model of the parametric
revenue maximization problem. Without the usual conditions
presented in the literature, we transform it into an equivalent
one where the revenue function is increasing, continuous and
concave.

2.1. Model

The model is based on a fairly standard price–demand for-
mulation for a product (or service). There is a known mathema-
tical relationship between price and demand. We let x denote
price and y denote demand (demand in one time period, or per
unit of time).

In the model, there is a parameter t from a nonempty set T .
t may represent status for decision epoch. We require no structure
for T and so t may be multiple representing parameters. Suppose
that for each t, price x is chosen from a nonempty set P and
correspondingly a nonnegative demand d(x) is received (called the
demand function). It is initially assumed that P is a bounded set.
This assumption will be relaxed in Remark 4 below. Then, a
revenue dðxÞx is received. Furthermore, there is a cost dðxÞλðtÞ
after realizing the demand d(x) at t. Here, λðtÞ is nonnegative and
can be interpreted as unit opportunity cost for choosing x at t.
Hence, we get a profit dðxÞx�dðxÞλðtÞ (called as revenue function) if
x is choosing at t. We thus study the following parametric
maximization problem:

sup
xAP

fdðxÞx�dðxÞλðtÞg; tAT : ð1Þ

Note that this is, in fact, a family of maximization problems. We
will give an example of λðtÞ in revenue management later. We
want to get an optimal solution xnt for problem (1) for each tAT .
For convenience, we say that xnt is optimal for problem (1)t, or
simply optimal for problem (1) when no confusion is induced.

2.2. Transformation

We study the maximization problem (1) according to the
following steps. First, we reduce the price set P such that d(x) is
a one-to-one correspondence between price x and demand y:
y¼ dðxÞ and x¼ pðyÞ for some function p(y). So, we can transform
the decision variable from price x into demand y¼ dðxÞ. Then, we
reduce the domain of the revenue function rðyÞ≔ypðyÞ such that it
is increasing. Finally, we revise r(y) to be concave.

Step I: An equivalent one with demand variable. Denote by
Λ� fdðxÞjxAPg the set of demands that are allowable under some
price in P. For any given demand yAΛ, denote by PðyÞ �
fxAPjdðxÞ ¼ yg the set of prices that yield demand y. Surely, the
set P(y) may include multiple prices. But it may suffice to consider
the largest one pðyÞ≔sup PðyÞ. The following lemma says that p(y)
is enough for the maximization problem (1) in the set P(y). We
denote by bðx; tÞ ¼ dðxÞx�dðxÞλðtÞ for convenience.

Lemma 1. For any given yAΛ, suppose pðyÞAPðyÞ. Then, bðpðyÞ; tÞZ
bðx; tÞ for all xAPðyÞ and tAT , where the equality holds if and only if
y¼0 or x¼ pðyÞ.
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Proof. For any given yAΛ, suppose pðyÞAPðyÞ. For any xAPðyÞ,
because of dðxÞ ¼ y and dðpðyÞÞ ¼ y, we have bðx; tÞ ¼ dðxÞ½x�λð
tÞ� ¼ dðpðyÞÞ½x�λðtÞ�. Due to the maximum of p(y), we have
further bðx; tÞrdðpðyÞÞ½pðyÞ�λðtÞ� ¼ bðpðyÞ; tÞ for tAT . Certainly,
the inequality above becomes an equality if and only if y¼0 or
x¼ pðyÞ. □

The condition pðyÞAPðyÞ given in the lemma above is reason-
able in practice. In fact, this condition is very weak, as shown in
the following remark.

Remark 1. We have pðyÞAPðyÞ under any one of the following
conditions.

(a) P(y) is a finite set. This is true in many practical cases,
especially when P is finite.

(b) d(x) is continuous in a closed price set P. In this case, P(y) is
also a closed set and so pðyÞAPðyÞ for each yAΛ.

(c) d(x) is decreasing (in a nonstrict meaning), left continuous,
bounded, and dð1Þ≔limx-1dðxÞ ¼ 0. In this case, P(y) is also
closed for each y. Let D¼ dð0Þ. Then, d(x) can be expressed by

dðxÞ ¼Dð1�FðxÞÞ for xZ0 ð2Þ
where FðxÞ ¼ Pfξoxg is a cumulative distributed function (d.f.)
for some random variable ξ. In this case, D may be interpreted
as the potential number of customers; if price is set as x, each
potential customer buys one item of the product with prob-
ability 1�FðxÞ. Hence, d(x) is the expected demand given price
x, and Fð�Þ is a cumulative distribution function representing
customers' willingness-to-pay. Hence, pðyÞAPðyÞ for each y. In
Ziya et al. (2004), d(x), and so F(x), is further required to be
twice differential. □

Following the remark above, we assume pðyÞAPðyÞ for each
yAΛ throughout this section. Due to Lemma 1, we take the price
set as P1 ¼ fpðyÞjyAΛg, a subset of the original set P. That is, the
maximization problem (1) is equivalent to the following one:

sup
xAP1

fdðxÞ½x�λðtÞ�g; tAT :

Now, there is a one-to-one correspondence between prices in
P1 and demands in Λ, and p(y) is the reverse function of d(x). So,
we can alternatively take demand y as the decision variable.
Define the revenue as a function of demand by rðyÞ ¼ ypðyÞ. Hence,
the maximization problem (1) is equivalent to the following one:

sup
yAΛ

frðyÞ�yλðtÞg; tAT : ð3Þ

That is, xAP is an optimal solution of (1)t if and only if y¼ dðxÞ is
an optimal solution of (3)t for each tAT . Here, the decision
variable is demand y, instead of price x in (1). We denote by
Bðy; tÞ ¼ rðyÞ�yλðtÞ for convenience. Surely, the function Bðy; tÞ is
simpler than the original revenue function in (1). So, we deal with
(3) in the following.

Though the maximization problem (3) is derived from the
original problem (1), problem (3) itself may be an original one,
e.g., in the optimization of queueing systems studied in Lippman
(1975).

In the following we study the maximization problem (3)
without condition on r(y) and Λ.

Step II: Increasingness of the revenue function. First, we have the
following lemma.

Lemma 2. For any given demands y1; y2AΛ with y1oy2 and
rðy1Þ4rðy2Þ, Bðy1; tÞ 4Bðy2; tÞ for all tAT . That is, such demand y2
would not be optimal in problem (3).

Proof. For any given y1; y2AΛ with y1oy2 and rðy1Þ4rðy2Þ, due
to the nonnegative nature of λðtÞ, Bðy1; tÞ ¼ rðy1Þ�y1λðtÞ4
rðy2Þ�y2λðtÞ ¼ Bðy2; tÞ for tAT . Hence, y2 would not be optimal
for each t. □

We call y2AΛ a decreasing point of r(y) if there is y1AΛ such
that y1oy2 and rðy1Þ4rðy2Þ. Then, the lemma above tells us that
all decreasing points in Λ are not optimal, and thus can be
eliminated from the decision set Λ. We denote by Λ1 the new
decision set after the elimination, i.e.,

Λ1≔fyAΛjy is a nondecreasing point of rðyÞg:
Surely, Λ1 is a nonempty set and r(y) is increasing in yAΛ1. When
r(y) is continuous in the closed set Λ, sup Λ1 achieves the
supremum of r(y) in yAΛ, i.e., rðsup Λ1Þ ¼ supyAΛrðyÞ.

Due to Lemma 2, the maximization problem (3), and then (1), is
equivalent to

sup
yAΛ1

frðyÞ�yλðtÞg; tAT : ð4Þ

In fact, yAΛ is optimal for problem (3) if and only if y is optimal
for problem (4) and yAΛ1. For each tAT , let ynðtÞ be the largest
maximizer in (4) if it exists. Then, we have the following result.

Proposition 1. (1) The revenue function r(y) is increasing, and so is
continuous almost everywhere, in yAΛ1. (2) ynðtÞ is increasing
(or decreasing) in t if λðtÞ is decreasing (or increasing) and ynðtÞ
exists for each t.

Proof. (1) This is true from real theory (see, e.g., Zheng and Wang,
1980). (2) This follows from the well-known property of modular
functions (Topkis, 1998). □

λðtÞ is increasing in many maximization problems, e.g., in the
revenue management, as discussed later. ynðtÞ exists if r(y) is
continuous in a closed set Λ1. Part (2) of the proposition above
tells us that when λðtÞ is monotone, the monotone of the optimal
solution is robust to the revenue function r(y). That is, whatever
the revenue function (or the demand function in (1)) is, the
optimal solution ynðtÞ to problem (3) increases (decreases) and
so pðynðtÞÞ is the optimal solution to problem (1) and is decreasing
(increasing) when λðtÞ is decreasing (increasing).

Step III: Concavity of the revenue function. For problem (4), we
further have the following lemma.

Lemma 3. For any given y1, y2, y3AΛ1 with y1oy2oy3, letting
α¼ ðy3�y2Þ=ðy3�y1Þ, if rðy2Þoαrðy1Þþð1�αÞrðy3Þ then Bðy2; tÞ
omaxfBðy1; tÞ;Bðy3; tÞg for all tAT . This means that y2 would not
be optimal for each tAT .

Proof. For any given y1, y2, y3AΛ1 with y1oy2oy3 and
α¼ ðy3�y2Þ=ðy3�y1Þ, y2 ¼ αy1þð1�αÞy3. So, when rðy2Þoαrðy1Þ
þð1�αÞrðy3Þ we have

Bðy2; tÞ ¼ rðy2Þ�y2λðtÞ
oαrðy1Þþð1�αÞrðy3Þ�αy1λðtÞ�ð1�αÞy3λðtÞ
¼ αBðy1; tÞþð1�αÞBðy3; tÞ
rmaxfBðy1; tÞ;Bðy3; tÞg; tAT :

Hence, y2 would not be optimal at any tAT . □

We call point y2AΛ1 a convex point of r(y) if there are
y1; y3AΛ1 satisfying the condition given in Lemma 3. Then, the
lemma above tells us that any convex point of r(y) would not be
optimal for any t, and thus can be eliminated from the demand set
Λ1. Denote by Λ2 the demand set after this elimination, i.e.,

Λ2≔fyAΛ1jy is not a convex point of rðyÞg:
According to Lemma 3, Λ2 can be obtained as follows. For any two
points y1; y3AΛ1, delete all points in the curve ðy; rðyÞÞ which are
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below the line from point ðy1; rðy1ÞÞ to point ðy2; rðy2ÞÞ until no
point can be deleted for arbitrary y1 and y3. Certainly, if inf Λ1AΛ1

then infΛ1AΛ2, and also if sup Λ1AΛ1 then sup Λ1AΛ2. So, when
Λ1 is closed we have

inf Λ1 ¼ inf Λ2; sup Λ1 ¼ sup Λ2: ð5Þ

Therefore, the maximization problem (4), and so problems
(3) and (1), is equivalent to

sup
yAΛ2

frðyÞ�yλðtÞg; tAT : ð6Þ

Here, r(y) is increasing and concave, and so continuous in yAΛ2

from Hu and Meng (2000). In this time, the objective function in
the problem above is continuous and then it achieves the max-
imum if the domain Λ2 is closed. We let Λ2 be the closure set of
Λ2. The value of r(y) in yAΛ2�Λ2 can be well defined since r(y) is
continuous in yAΛ2. In fact, for any y0AΛ2�Λ2 with any sequence
fyng in Λ2 satisfying yn-y0, it is easy to get from the continuity of r
(y) that r0≔limn-1rðynÞ exists uniquely and is independent of the
sequence fyng. So, we define rðy0Þ ¼ r0. Therefore, we extend the
revenue function r(y) into the domain Λ2. Due to (5), when Λ1 is
closed we have also that inf Λ1 ¼ inf Λ2 and sup Λ1 ¼ sup Λ2.
Then, we introduce the following problemwith the same objective
function as in (6) but an extended domain Λ2:

sup
yAΛ2

frðyÞ�yλðtÞg; tAT : ð7Þ

From real theory (see Zheng and Wang, 1980), Λ2 ¼⋃i½ai; bi�
with some constants 0ra1rb1o a2rb2⋯rdn, where dn ¼
sup Λ2. Let cn≔inf Λ be the lowest allowable demand. If cnAΛ
then cn is surely neither a decreasing point nor a convex point, i.e.,
cnAΛ2 and a1 ¼ cn. Certainly, Λ2 � ½cn; dn� and cn; dnAΛ2.

We further extend the revenue function r(y) from the domain
yAΛ2 into the closed interval yA ½cn; dn� as follows:

rnðyÞ ¼
rðyÞ airyrbi; i¼ 1;2;…
βirðbiÞþð1�βiÞrðaiþ1Þ bioyoaiþ1; i¼ 1;2;…

(
ð8Þ

where βi ¼ ðaiþ1�yÞ=ðaiþ1�biÞ. This extension is unique.
Due to Proposition 1 and Lemma 3, we have apparently the

following proposition.

Proposition 2. The revenue function rnðyÞ is increasing, continuous
and concave in yA ½cn; dn�.

The definition of the regular demand functions given in Gallego
and van Ryzin (1994) does not require the increasingness. Based
on the proposition above, we call a revenue function is regular if it
is increasing, continuous and concave. Then, rnðyÞ is now regular.

With the regular revenue function rnðyÞ, we consider the
following maximization problem:

sup
yA ½cn ;dn�

frnðyÞ�yλðtÞg; tAT : ð9Þ

For each tAT , the objective function above is concave and
continuous in the closed interval ½cn; dn�. So, there are optimal
solutions, the set of which may be an interval, denoted by YnðtÞ.
Now, YnðtÞ can be obtained by solving the first order condition of
(9), i.e., ðd=dyÞrnðyÞ ¼ λðtÞ for tAT .

In some case, we can take cn ¼ 0 in the above proposition.

Remark 2. When for each tAT there is yA ½cn;dn� such that
rnðyÞ�yλðtÞZ0, we can add zero to Λ2 without changing the
optimality of problem (6). Thus, we can take cn ¼ 0 and rnðyÞ can
be extended to the domain ½0; dn�, as done in (8). □

2.3. Equivalent results

We have established the equivalence of the optimal solutions
among problems (1), (3), (4), and (6). But we have not extend such
an equivalence to problem (7) or (9). Overall, we have the
following theorem.

Theorem 1. (1) Any optimal solution of problem (3), (4) or (6)
remains optimal for problems (7) and (9).
(2) For each tAT , YnðtÞ \ Λ2 is the nonempty set of optimal

solutions for problem (7). Moreover, when YnðtÞ \ Λ2 is nonempty,
each of its elements is optimal for problems (3), (4) and (6).

Proof. (1) It is obvious from the previous discussions.
(2) Given t, let Bnðy; tÞ ¼ rnðyÞ�yλðtÞ. For any y0A ½cn; dn��Λ2,

there must exist iAf1;2;…g such that bioy0oaiþ1. Let β¼
ðaiþ1�y0Þ=ðaiþ1�biÞ. Then, y0 ¼ βbiþð1�βÞaiþ1. Due to (8) and
(9) we have that

Bnðy0; tÞ ¼ βrðbiÞþð1�βÞrðaiþ1Þ�y0λðtÞ
¼ βrðbiÞþð1�βÞrðaiþ1Þ�βbiλðtÞ�ð1�βÞaiþ1λðtÞ
¼ βBnðbi; tÞþð1�βÞBnðaiþ1; tÞ
rmaxfBnðbi; tÞ;Bnðaiþ1; tÞg

where the inequality follows due to βA ð0;1Þ. The inequality above
becomes an equality if and only if Bnðbi; tÞ ¼ Bnðaiþ1; tÞ. Hence, both
bi and aiþ1 are optimal when y0 is optimal. This shows that YnðtÞ
\Λ2 is nonempty. Then, the remaining result is clear from (1). □

The theorem above tells us two things. One is that any optimal
solution of the original problem (3) remains optimal for problem
(9). So, if there is an optimal solution of (3) then problem (9) must
have optimal solutions. The other is that if YnðtÞ \ Λ2 is empty
then the original problem (3) has no optimal solution; otherwise,
each one in YnðtÞ \ Λ2 is optimal for problems (3), (4), (6) and (7).

In what follows, we consider a case where λðtÞ40 for all tAT .
First, we note that for this case, Lemma 2 can be revised as follows
with exactly the same proof: for any y1; y2AΛ with y1oy2 and
rðy1ÞZrðy2Þ, we have Bðy1; tÞ4Bðy2; tÞ for all t40. We then
redefine the decreasing points as such y2. Thus, after eliminating
all decreasing points, the revenue function r(y) is strictly increas-
ing in yAΛ1 and so does in yAΛ2 and in yAΛ2.

With this revision, rnðyÞ is strictly increasing in ½cn; dn� and
continuous and so bounded. Then, the maximization problem (9)
has the unique optimal solution, denoted by ynðtÞ, for each tAT .
Therefore, we have the following corollary immediately from
Theorem 1.

Corollary 1. Suppose λðtÞ40 for all tAT . Then, for each tAT there
exists the unique solution ynðtÞ of the maximization problem (9)t.
Moreover, ynðtÞ is the unique optimal solution of the maximization
problem (3)t if and only if ynðtÞAΛ2. □

If the original maximization problem is (1) and it has optimal
solutions, for example, when d(x) is continuous in the closed set P
(this is often assumed in the literature). Then we have the
following corollary.

Corollary 2. Suppose λðtÞ40 for all tAT and problem (1) has
optimal solutions. Then, for each tAT , pðynðtÞÞ is the optimal solution
of the maximization problem (1)t if and only if ynðtÞ is the optimal
solution of the maximization problem (9)t. □

It should be noted that in the above steps, the revenue rnðyÞ and
the interval ½cn; dn� are all independent of t.
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2.4. Algorithms

In this subsection, we present an algorithm to compute Λ1 and
Λ2 when r(y) is continuously twice differentiable. In this case, the
computation of Λ1 and Λ2 becomes simpler.

First, suppose r(y) is continuously differentiable in a closed set
Λ. Then, Λ1 can be obtained by a simpler method as follows. In this
case, r′ðyÞ is continuous in yAΛ, and so r(y) is increasing in some
intervals and decreasing in other intervals. Thus, we can delete all
those intervals in which r(y) is decreasing. The remaining part of Λ
consists of several intervals in which r(y) is increasing. For these
intervals, let ½a′1; b′1� be the first one. (Note: If r(y) is decreasing at cn

then a′1 ¼ b′1 ¼ cn.) Then, all points a4b′1 satisfying rðaÞorðb′1Þ
should further be deleted. If the remaining part of Λ is nonempty,
we denote by ½a′2; b′2� the first interval. Again all points a4b′2
satisfying rðaÞorðb′2Þ should be deleted, and so on. Finally, we have
Λ1 ¼ ½a′1; b′1� [ ½a′2; b′2� [ ⋯, union of possibly finite or infinite
intervals. Since demand is often bounded above, we assume for
convenience Λ1 ¼ ½a′1; b′1� [ ½a′2; b′2� [ ⋯ [ ½a′n;b′n� with finite inter-
vals. However, the infinite setting can be studied similarly and all
results are still true in the following.

Suppose further r(y) is continuously twice differentiable in
yAΛ1. In this case, r″ðyÞ is continuous, and so r′ðyÞ is decreasing (or
equivalently r(y) is concave) in some intervals and is increasing
(or r(y) is convex) in other intervals. Similar to Λ1, we let Λ′

2 be the
subset of Λ1 in which r′ðyÞ is decreasing, i.e., Λ′

2≔fyAΛ1jr′ðyÞ is
decreasing at yg ¼ ½a″1; b″1� [ ½a″2; b″2� [ ⋯ [ ½a″n; b″n�. Then, r(y)
is increasingly concave in each interval ½a″i; b″i�, but not necessarily
concave in Λ′

2.
It is obvious that rnðyÞ is concave in Λ′

2 if and only if

r″ yð Þr0; yA a″i ; b
″
i

h i
; r′ b″i

� �
Z

rða″iþ1Þ�rðb″i Þ
a″iþ1�b″i

Zr′ a″iþ1

� � 8 i¼ 1;2;…;n:

ð10Þ
Since r(y) is concave in each interval in Λ′

2, we have the
following algorithm.

Algorithm 1. Compute Λ2 from Λ′
2 ¼ ½a″1; b″1� [ ½a″2; b″2� [ ⋯ [

½a″n;b″n� for nZ2 provided that r(y) is continuously twice
differentiable.
Step 0: Let i¼1.
Step 1: Let δ¼ ðrða″iþ1Þ�rðb″iÞÞ=ða″iþ1�b″iÞ.
Step 2: (1) If r′ðb″iÞoδ then solve ðrða″iþ1Þ�rðyÞÞ

=ða″iþ1�yÞ ¼ r′ðyÞ in ½a″i; b″iÞ. If there is a solution yn

i of the
equation in ½a″i; b″iÞ, then let b″i ¼ yn

i ; otherwise, if i¼1 let
b″i ¼ a″i, else delete ½a″i; b″i� from Λ′

2 and stop when i¼ n�1. Let
i¼ iþ1. Goto Step 1.
(2) If r′ða″iþ1Þ4δ, then solve ðrðyÞ�rðb″iÞÞ=ðy�b″iÞ ¼ r′ðyÞ in

½a″iþ1; b″iþ1Þ. If there is a solution yn

iþ1 of the equation in
½a″iþ1; b″iþ1Þ, then let a″iþ1 ¼ yn

iþ1; otherwise, if i¼n let a″iþ1≔
b″iþ1 and stop, else delete ½a″iþ1; b″iþ1� from Λ′

2 and stop when
i¼ n�1. Let i¼ iþ1. Goto Step 1.

It is clear that we get Λ2 when Algorithm 1 stops.
We give the following remark about the concavity of r(y).

Remark 3. (1) The complexity of Algorithm 1 mainly depends on
solving the two equations in Step 2. If there is no analytic methods
to solve these two equations, we need to solve them numerically.
However, once rnðyÞ is obtained, the maximum of rnðyÞ�yλðtÞ can
be solved analytically for all tAT . Hence, this algorithm has
advantage over the numerical computation when the parameter
set T is large, e.g., an interval. On the other hand, it is easy to
perform Algorithm 1 in many cases, as done in the example
discussed in Section 3.3.
(2) It may be not necessary to compute Λ2 and rnðyÞ. In fact, we

can stop our steps whenever we can solve optimal solutions of

problem (3), (4), (6), (7) and (9), or

sup
yAΛ′

2

frðyÞ�yλðtÞg; tAT : ð11Þ

If we can get an optimal solution for any problem above then we
no longer compute Λ2 to solve the problem (9). □

Finally, we give the following remark for the unboundedness of
the price set P.

Remark 4. Suppose the price set P is unbounded. It is further
assumed that limx-1xdðxÞ ¼ 0, as usual in the literature, e.g.,
Gallego and van Ryzin (1994). Thus, limx-1dðxÞ ¼ 0 and so
cn ¼ inf Λ¼ 0. We then define rð0Þ≔limy-0rðyÞ ¼ limx-1xdðxÞ ¼ 0.
Furthermore, the objective in problem (1) is positive when x4λðtÞ.
This implies that the objective in problem (3) is positive at some y.
Therefore, y¼0 would not be optimal for problem (3), and so we
can assume that 0AΛ in (3). Then, all results in this section are
true. □

2.5. Optimal arrival control in queueing systems

As an example to illustrate our problem and results discussed
in the previous subsections, we restudy the optimal arrival control
in a M/M/K system that is studied in Lippman (1975). This problem
is not concerned in Ziya et al. (2004). Here, (1) customers arrive
according to a Poisson process with rate λ, which is chosen from a
nonempty compact set Λ� ½0; λ� with λ being a finite and positive
constant; (2) each of K servers serves customers with an expo-
nential distributed time with rate μ. All the service times are
independent with each other and also with the arrival process. The
holding cost rate h(i) when the queue length is i (i.e., i customers
in the system) is nonnegative, increasing and convex. On the other
hand, the system incurs a nonnegative reward rate qðλÞwhen λAΛ
is chosen.

Let Va
αðiÞ be the minimal discounted cost in an infinite horizon

with a discount factor α40. Then applying the Lippman's device,
Va
αðiÞ satisfies the following optimality equation:

Va
α ið Þ ¼ 1

Δþα
h ið Þþμ i4Kð ÞVa

α i�1ð Þþ Δ�μ i4Kð Þ� �
Va
α ið Þ� 	

þ 1
Δþα

min
λAΛ

gaα i; λ
� �

; iZ0; ð12Þ

where Δ¼ λþμK , gaαði; λÞ ¼ �λqðλÞþλvaαðiþ1Þ and vaαðiþ1Þ ¼
Va
αðiþ1Þ�Va

αðiÞ. Define λαðiÞ as the largest minimizer in the
optimality equation above. Lippman (1975) shows that if qðλÞ is
either continuous or decreasing and right-continuous, then Va

αðiÞ is
convex in i and so λαðiÞ is decreasing in i. In Lippman (1975), the
right continuity of qðλÞ ensures the existence of λαðiÞ and the
decreasingness of qðλÞ ensures the monotone of λαðiÞ. However,
both the existence and monotone of λαðiÞ are ensured when qðλÞ is
continuous. Furthermore, it is not concerned how to compute λαðiÞ
in the literature.

Since minλgaαði; λÞ ¼ �maxλfλqðλÞ�λvaαðiþ1Þg, the minimization
problem minλgαði; λÞ in (12) can be fit into the problem (3). Given
any function qðλÞ, let Λ1 be the subset of Λ consisting of nondecreas-
ing points of λqðλÞ and Λ2 be the subset of Λ1 consisting of concave
points of λqðλÞ. Since Λ is compact, due to Theorem 1,

min
λAΛ

gaαði; λÞ ¼ min
λAΛ1

gaαði; λÞ ¼ min
λAΛ2

gaαði; λÞ; iZ1: ð13Þ

So, the following proposition is clear from Proposition 1 and
Theorem 1.

Proposition 3. Va
αðiÞ is convex in i, λαðiÞ is a solution of

ðλqðλÞÞ′¼ vaαðiþ1Þ in Λ2 and is decreasing in i.
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Only the monotone of the optimal policies is studied in the
literature of optimization in queueing systems. We show this is
true without any condition on qðλÞ. Moreover, it is not concerned
how to compute the optimal arrival rate λαðiÞ, which is now the
solution of ðλqðλÞÞ′¼ vaαðiþ1Þ in Λ2.

3. Revenue management with dynamic pricing

In this section, we apply the transformation presented in
Section 2 to study a revenue management with continuous time
dynamic pricing.

3.1. Model

The problem we considered here is formulated as follows. The
retailer has a stock of N items and wants to sell them during a
finite time horizon T. At any time, the retailer chooses one price
from an allowable price set P, which is arbitrary but nonempty.
Demand arrives according to a nonhomogeneous Poisson process
with a time-dependent demand intensity (or demand rate),
denoted by dt(x), a function of price x. We only assume that dt(x)
satisfies the condition given in Lemma 1. (This problem with the
homogeneous demand is first studied by Gallego and van Ryzin,
1994).

Let Nt be the number of items sold out up to time t. A pricing
policy is defined as a function μ¼ ðxt ;0rtrTÞ, with xtAP for all t,
satisfying

R T
0 dNtrN. This inequality means that the total number

of items sold out must be less than or equal to N, the initial
number hold in the retailer. The set of all pricing policies is
denoted by U. For any given μAU, the expected total revenue of
the retailer by using pricing policy μ in the time period ½0; t� with
the initial stock number n is

Jμðn; tÞ ¼ Eμ

Z t

0
xsdNs


 �
; 0rtrT ; n¼ 0; 1;…;N:

Surely, we have the boundary conditions Jμðn;0Þ ¼ 0 and Jμð0; tÞ ¼
0, which mean that no value remains if there remains no items or
no time for selling.

The retailer's problem is to find a pricing policy that maximizes
the expected total revenue over the policy set U: Jðn; tÞ ¼
supμAUJμðn; tÞ. Here, Jðn; tÞ is called the optimal value function. It
is well-known that Jðn; tÞ satisfies the following equation (the
Hamilton–Jacobi Bellman (HJB) equation in Gihman and Skorohod,
1979, or the optimality equation in continuous time Markov
decision process in Hu, 1993):

∂Jðn; tÞ
∂t

¼ sup
xAP

dt xð Þ x�ΔJ n; tð Þ� �� 	
; tAT ; n¼ 0;1;2;…;N ð14Þ

where ΔJðn; tÞ ¼ Jðn; tÞ�Jðn�1; tÞ is the marginal revenue at time t
with n items. Let xnðn; tÞ be the largest maximizer in (14). Then,
xnðn; tÞ is an optimal price of the retailer at ðn; tÞ.

In the following subsection, we study the problem (14) above
for the homogeneous demand case and the nonhomogeneous
demand case, respectively, by applying the transformation pre-
sented in Section 2.

3.2. Results

Since the demand function dt(x) depends on t, we know from
Section 2 that for each t there are constants 0rcnt rdn

t and a
regular revenue rate function rnt ðyÞ such that Jðn; tÞ satisfies the HJB
equation (14) if and only if it satisfies the following HJB equation:

∂Jðn; tÞ
∂t

¼ sup
yA ½cnt ;d

n

t �
rnt yð Þ�yΔJ n; tð Þ� 	

; tA 0; T½ �; n¼ 1;2;…;N; ð15Þ

where rnt ðyÞ is strictly increasing and concave in y, and the optimal
demand rate ynðn; tÞ is the unique maximizer in (15). The unique
difference between Eqs. (15) and (14) is that the revenue and
decision sets in Eq. (15) are dependent of the time variable t. We
take price x instead of demand rate y as the decision variable.
Then, Eq. (15) is equivalent to

∂Jðn; tÞ
∂t

¼ sup
xA ½pt1 ;pt2�

dn

t xð Þ x�ΔJ n; tð Þ� �� 	
; tA 0; T½ �; n¼ 1;2;…;N

where dn

t ðxÞ is the demand function, defined as the reverse of the
function rnt ðyÞ=y, and pt1 ¼ rnt ðdn

t Þ=dn

t and pt2 ¼ rnt ðcnt Þ=cnt . Apparently,
Jðn; tÞ is increasing in t and so ∂Jðn; tÞ=∂tZ0. Thus, there must be
xA ½pt1; pt2� such that dn

t ðxÞ½x�ΔJðn; tÞ�Z0. Therefore, the HJB
equation above is further equivalent to

∂Jðn; tÞ
∂t

¼ sup
xZ0

dn

t xð Þ x�ΔJ n; tð Þ� �� 	
; tA 0; T½ �; n¼ 1;2;…;N ð16Þ

where we define dn

t ðxÞ ¼ 0 if x=2½pt1; pt2�. In the equation above, the
price is constrained only to be nonnegative. Then, the optimal
price xnðn; tÞ is the unique maximizer in (16), due to the unique
maximizer of (15). It should be noted that Eq. (16) has the same
form as the original HJB equation (14). But, here the price set is
½0;1Þ and dn

t ðxÞ is regular due to Proposition 2. Obviously,
Eq. (16) is exactly equation (4) in Wei and Hu (2002). Hence, we
have the following results from Theorems 1, 5, and 6 in Wei and
Hu (2002).

Theorem 2. For any given t, the optimal expected revenue function
Jðn; tÞ is increasing and concave in n, the optimal pricing policy
xnðn; tÞ is decreasing in n, and the optimal demand rate ynðn; tÞ is
increasing in n. Moreover, xnðn; tÞ is increasing in t when
dn

t ðx1Þ=dn

t ðx2Þ is increasing in t for each given x14x2.

The theorem above implies that the more the remaining items
are, the lower the price will be, and under the given condition on
dn

t ðxÞ in the theorem, the longer the selling horizon is, the higher
the price will be.

It is interesting that we used the transformation method twice
above: first to derive Eq. (15) from (14) and second to derive
Eq. (16) from (15).

When the demand function is homogeneous, i.e., dtðxÞ ¼ dðxÞ is
irrespective of t, all cnt , d

n

t , r
n
t ðyÞ in (15) are homogeneous, denoted

by cn; dn; rnðyÞ, respectively. In fact, cn ¼ infxAPdðxÞ and dn ¼
arg sup ypðyÞ. So, HJB equation (15) is exactly equation (8) in
Gallego and van Ryzin (1994). Thus, the following corollary follows
from Theorem 1 there.

Corollary 3. When the demand is homogeneous, Jðn; tÞ is increasing
and concave in t, both ΔJðn; tÞ and xnðn; tÞ are increasing in t, but
ynðn; tÞ is decreasing in t.

In Theorem 2 and Corollary 3, we show monotone properties of
the optimal demand rate and the optimal price. These are shown
in the literature under the condition that the demand function is
regular (Gallego and van Ryzin, 1994). Our results imply that these
monotone properties are robust to the demand function (together
with the price set). This is true, in fact, irrespective of the
regularity of the demand function, as shown in Proposition 1.
The regularity is to ensure that the optimal solution can be
obtained from the first order condition.

In Section 2, the demand function d(x) and the revenue
function r(y) are independent of the parameter. Here, we general-
ize the transformation to the case where dt(x) and rt(y) depend on
the parameter t.
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3.3. An example

Consider a homogeneous revenue management problemwhere
the price set is P ¼ ½0;1Þ and the demand rate function is

dðxÞ ¼ minfex�2; e�xg; xr1; x41:5
e�1:5; 1oxr1:5:

(

Here, d(x) is neither increasing nor decreasing (see Fig. 1). In fact,
dðxÞ ¼ ex�2 is increasing in xr1; dðxÞ ¼ e�1:5 remains a constant in
xAð1;1:5�; while dðxÞ ¼ e�x is decreasing in x41:5. We apply the
transformation for this problem in the following.

The value region of d(x) is Λ¼ ð0; e�1�. For yAð0; e�1:7Þ; PðyÞ ¼
f�ln yg and so pðyÞ ¼ �ln y; for yA ½e�1:7; e �1:5Þ; PðyÞ ¼
f�ln y;2þ ln yg and so pðyÞ ¼�ln y; for y¼ e�1:5; PðyÞ ¼ ð1;1:5�
and so pðyÞ ¼ 1:5¼�ln y; while for yAðe�1:5; e�1�; PðyÞ ¼ f2þ ln yg
and so pðyÞ ¼ 2þ ln y. Thus, the revenue function with y is given by

rðyÞ ¼ �y ln y; yA ð0; e�1:5�
yð2þ ln yÞ; yA ðe�1:5; e�1�:

(

See r(y) in Fig. 2.
Therefore, the HJB equation (14) for the problem here is

equivalent to the following one:

∂Jðn; tÞ
∂t

¼ sup
yA ð0;e�1 �

r yð Þ�yΔJ n; tð Þ� 	
; tA 0; T½ �; n¼ 1;2;…;N:

Moreover, since limy-0þ y ln y¼ 0, r(y) is strictly increasing in
yAð0; e�1:5� and in yAðe�1:5; e�1�, but decreasing at y¼ e�1:5. Let yn

be the unique solution of equation rðyÞ ¼ rðe�1:5�Þ ¼ 1:5e�1:5 in
yAðe�1:5; e�1�, i.e., ynð2þ ln ynÞ ¼ 1:5e�1:5. Then yn � 0:3511oe�1.
Therefore, Λ1 ¼ ð0; e�1:5� [ ðyn; e�1�. Obviously, r(y) is concave in
yAð0; e�1:5� but convex in yAðyn; e�1�. Thus, Λ2 ¼ ð0; e�1:5� [ fe�1g.
So, we can limit us to consider the optimal solution for the HJB
equation in the set Λ2. That is, it suffices to consider the HJB
equation

∂Jðn; tÞ
∂t

¼ sup
yA ð0;e�1:5 � [ fe�1g

r yð Þ�yΔJ n; tð Þ� 	
; tA 0; T½ �; n¼ 1;2;…;N:

We do not need to compute rnðyÞ and cn; dn here. It is easy to see
that the optimal solution for the HJB equation above is

ynðn; tÞ ¼
e�1 if ΔJðn; tÞr ðe0:5�1:5Þ=ðe0:5�1Þ
e�1:5 if ðe0:5�1:5Þ=ðe0:5�1ÞrΔJðn; tÞr0:5
e�1�ΔJðn;tÞ if ΔJðn; tÞZ0:5:

8><
>:

Thus, the optimal price is

xnðn; tÞ ¼ pðynðn; tÞÞ ¼
1 if ΔJðn; tÞr ðe0:5�1:5Þ=ðe0:5�1Þ
1:5 if ðe0:5�1:5Þ=ðe0:5�1ÞrΔJðn; tÞr0:5
1þΔJðn; tÞ if ΔJðn; tÞZ0:5:

8><
>:

So, for tA ½0; T �; n¼ 1;2;…;N,

∂Jðn; tÞ
∂t

¼
e�1½1�ΔJðn; tÞ� if ΔJðn; tÞr ðe0:5�1:5Þ=ðe0:5�1Þ
e�1:5½1:5�ΔJðn; tÞ� if ðe0:5�1:5Þ=ðe0:5�1ÞrΔJðn; tÞr0:5
e�1�ΔJðn;tÞ if ΔJðn; tÞZ0:5:

8><
>:

Since ΔJðn; tÞ is increasing in t, for each n there exist tnn1otnn2 such
that ΔJðn; tnn1Þ ¼ ðe0:5�1:5Þ=ðe0:5�1Þ and ΔJðn; tnn2Þ ¼ 0:5. So,

∂Jðn; tÞ
∂t

¼
e�1½1�ΔJðn; tÞ� if trtnn1
e�1:5½1:5�ΔJðn; tÞ� if tnn1rtrtnn2
e�1�ΔJðn;tÞ if tZtnn2:

8>><
>>:

Due to Jð0; tÞ ¼ 0, the above differential equation can be solved
iteratively for n¼ 1;2;…;N.

For example, for n¼1, Jð0; tÞ ¼ 0; Jð1; tÞ ¼ΔJð1; tÞ. Solving the
differential equation ∂Jð1; tÞ=∂t ¼ e�1½1�Jð1; tÞ� with the boundary
condition Jð1;0Þ ¼ 0 we get1 Jð1; tÞ ¼ 1�e�e�1t . Solving Jð1; tÞ ¼
ðe0:5�1:5Þ=ðe0:5�1Þ we get tn11 ¼�e lnð2ðe0:5�1ÞÞ � 0:708.

Then, solving the differential equation ∂Jð1; tÞ=∂t ¼ 1:5e�1:5

�e�1:5Jð1; tÞ; tZtn11 with the boundary condition Jð1; tn11Þ ¼
ðe0:5�1:5Þ=ðe0:5�1Þ we get

Jð1; tÞ ¼ Jð1; tn11Þe�e�1:5ðt�tn11Þ þ
Z t

tn1

e�e�1:5ðt�sÞ1:5e�1:5 ds

¼ ½Jð1; tn11Þ�1:5�e�e�1:5ðt�tn11Þ þ1:5:

Solving Jð1; tÞ ¼ 0:5 for t4tn11 we get tn12 ¼ tn11�e1:5

lnð2ð1�e�0:5ÞÞ � 1:782.
Finally, solving the differential equation ∂Jð1; tÞ

=∂t ¼ e�1�Jð1;tÞ; tZtn12 with the boundary condition Jð1; tn12Þ ¼ 0:5
we get Jð1; tÞ ¼ ln½e�1ðt�tn12Þþe0:5� for tZtn12. Therefore, we have

Jð1; tÞ ¼
1�e�e�1t if trtn11
ðJð1; tn11Þ�1:5Þe�e�1:5ðt�tn11Þ þ1:5 if tn11rtrtn12
ln½e�1ðt�tn12Þþe0:5� if tZtn12:

8>><
>>:

Figs. 3 and 4 give the optimal price xnðn; tÞ and the maximum
expected total revenue Jðn; tÞ with t ¼ 10;20;30 and n¼ 1;2;…;10,
respectively. The results perfectly illustrate our conclusions as
shown in Theorem 2 and Corollary 3.

The computation for the example above shows that it is easy to
implement our transformation. On the contrary, it is difficult to
solve directly the revenue maximization problem (14) even for
dtðxÞ ¼ dðxÞ.

4. A supply chain with price-only contract

Assumption IGFR is also used in Lariviere and Porteus (2001)
for a supply chain with price-only contract for one period. The
supply chain consists of one manufacturer and one retailer. The
manufacturer, as the game's leader, produces the product with a
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Fig. 1. The demand function d(x).
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Fig. 2. The revenue function r(y).

1 The solution for the differential equation f ′ðtÞ ¼ aðtÞf ðtÞþbðtÞ with the

boundary condition f ðt0Þ ¼ y0 is f ðtÞ ¼ y0e
R t

t0
aðxÞ dxþ R t

t0
e
R t

s
aðxÞ dxbðsÞ ds; tZt0.
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unit cost c and determines first the wholesale price w to sell her
products to the retailer. The retailer, as the follower, determines
his order quantity q, or equivalently the inventory level y after the
order, based on the wholesale price w. The demand D at the
retailer is a random variable with d.f. Fð�Þ. The retail price r4c is
exogenous. It is further assumed that the salvage value of unsold
products at the end of the period is zero and unmet demands are
lost. Let F�1ð�Þ be the reverse function of Fð�Þ and F ðyÞ ¼ 1�FðyÞ.

For any given wholesale price wrr, the retailer faces a news-
vendor problem with the expected profit

ΠRðyÞ ¼�wyþrE minfy;Dg ¼�wyþr
Z y

0
x dFðxÞþrF ðyÞ: ð17Þ

It is well-known that the retailer's optimal inventory level is
yðwÞ ¼ F�1ððr�wÞ=rÞ given w.

Therefore, the manufacturer's demand is y(w) and his profit is
ΠMðwÞ ¼ ðw�cÞyðwÞ, whenever his wholesale price is w. So, his
problem is

max
crwr r

ΠMðwÞ ¼ ðw�cÞyðwÞ: ð18Þ

Since y(w) has the reverse function wðyÞ≔rF ðyÞ, we can take y as
the decision variable, instead of w, for the manufacturer. Therefore,
the problem (18) becomes equivalently

max
yZ0

ΠMðyÞ ¼ RðyÞ�cy; ð19Þ

where RðyÞ ¼ ryF ðyÞ is the revenue function when the retailer's
inventory level is y.

Lariviere and Porteus (2001) shows that under Assumption
IGFR (i.e., F is IGFR) and Fð�Þ is derivative, ΠMðyÞ is a unimodal
function, and therefore the optimal solutions can be obtained
easily. But IGFR is not needed if our transformation method is
applied. By letting T ¼ f0g be a singleton and λðtÞ ¼ c, we see that

problem (19) is exactly problem (3). Then, from Corollary 1 we can
get the following theorem. Here, cn ¼ inf Λ¼ 0 due to Λ¼ ½0;1Þ.

Theorem 3. There is a revenue function RnðyÞ, which is continuous,
strictly increasing and concave, such that problem (19) is equivalent
to the following one with dn ¼ arg supyZ0RðyÞ:

max
yA ½0;dn�

fRnðyÞ�cyg: ð20Þ

Here, RnðyÞ�cy is continuous and concave. So, the above
problem can be solved by solving its first order condition. Another
advantage of problem (20) prior to problem (19) is that the
domain here is a finite interval ½0; dn�.

Since there is no parameter t here, it is not necessary to
construct RnðyÞ. In fact, we can simplify the steps in Algorithm 1
for computing the optimal solution of (19).

Algorithm 2. Solving problem (19). (1) (Since the first order
condition of (19) is R′ðyÞ ¼ c, its solutions must lie in Λ1.) If
R′ðyÞ ¼ c has the unique solution yn then it suffices to judge
R″ðynÞr0. When R″ðynÞr0, yn is the optimal solution of (19);
otherwise (19) has no optimal solution.
(2) If R′ðyÞ ¼ 0 has multiple solutions, we compute Λ2. Due to

Theorem 1, any solution of R′ðyÞ ¼ 0 in Λ2 is optimal for problem
(19); otherwise if there is no solution of R′ðyÞ ¼ 0 in Λ2, then (19)
has no optimal solution.

We consider two examples in the following to illustrate how to
solve problem (19), for continuous type and discrete type random
demands, respectively.

Example 1. The d.f. F(y) of the demand and then the revenue
function R(y) are, respectively,

F yð Þ ¼

0; 0ryr1;
1
2
� 1
2y

; 1ryr2;

1� 3
4ðy�1Þ2

; yZ2;

R yð Þ ¼ ryF yð Þ ¼

ry; 0ryr1;
r
2
yþ1ð Þ; 1ryr2;

3ry
4ðy�1Þ2

; yZ2:

8>>>>><
>>>>>:

8>>>>><
>>>>>:

Surely, R(y) is increasing in yr2 and decreasing in yZ2. So,
Λ1 ¼ ½0;2�. Moreover, Λ2 ¼Λ2 ¼Λ1 ¼ ½0;2�. So, RðyÞ�cy is concave
in yA ½0;2�. Now, ðd=dyÞ½RðyÞ�cy� ¼ r�c for 0ryo1 and ¼ 1

2r�c for
1oyr2. Due to r4c, we know that the optimal solution is y¼1
when coro2c, is y¼2 when rZ2c, and is any yA ½1;2� when
r¼ 2c. □

The assumption of IGFR is not true here. In fact, its generalized
failure rate is eðyÞ ¼ 0 for 0ryo1; eðyÞ ¼ 1=yðyþ1Þ for 1ryo2,
and eðyÞ ¼ y=2ðy�1Þ for yZ2. Surely, e(y) is strictly decreasing in
yA ½1;2Þ and in y42, but increasing only at y¼2.

Hence, the example above illustrates that our method can be
applied to cases where IGFR is not true and the generalized failure
rate e(x) may be strictly decreasing at the optimal solutions.
Moreover, the IGFR needs that the d.f. is continuous type, but
the method in this paper can unify the continuous and discrete
types of d.f.s.

At the end of this section, we give the following example,
which shows that the maximization problem (19) for the manu-
facturer may have no optimal solution for discrete type demand if
the d.f. is defined by FðxÞ ¼ Pfξrxg.

Example 2. Consider the demand variable with probability
Pfξ¼ 1g ¼ 1=6; Pfξ¼ 2g ¼ 1=2; Pfξ¼ 3g ¼ 1=3. The d.f. of the
demand is defined by FðyÞ ¼ Pfξryg, which is right continuous.

),(* tnx

n

Fig. 3. The optimal price xnðn; tÞ.

),( tnJ

n

Fig. 4. The maximum revenue Jðn; tÞ.
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Then, F(y) and the revenue function R(y) are, respectively,

F yð Þ ¼

0; yo1;
1
6
; 1ryo2;

2
3
; 2ryo3;

1; yZ3;

R yð Þ ¼ ryF yð Þ ¼

ry; yo1
5
6
ry; 1ryo2

1
3
ry; 2ryo3

0; yZ3:

8>>>>>>><
>>>>>>>:

8>>>>>>><
>>>>>>>:

Then, Λ1 ¼ 0;1½ Þ [ 6
5;2
� �

, Λ2 ¼ ½0;1Þ, and RnðyÞ ¼ ryF ðyÞ ¼ ry for
yAΛ2 ¼ ½0;1�. Obviously, the optimal solution of maxyA ½0;1�
fRnðyÞ�cyg is 1 when r4c. But due to Theorem 1, the original
maximization problem (19) in this example has no optimal
solution (in fact, the maximum value of the objective RðyÞ�cy is
achieved when y-2� from the left side of point 2).

The example above indicates a fact that when F(y) is increasing
and right-continuous (a discrete type d.f.), problem (19) may have
no optimal solution and the optimal solution of (20) may be not in
Λ1. This differs from the case when F is a continuous type d.f. for
which the objective function is continuous and so there must have
optimal solutions for (19).

5. Extension to a parametric cost minimization problem

In this section, we extend the transformation method pre-
sented in Section 2 to a parametric cost minimization problem.
This is further illustrated by the optimal service rate control in a
queueing system.

5.1. Parametric cost minimization problem

We consider the following problem:

inf
yAΛ

frðyÞ�yλðtÞg; tAT ; ð21Þ

where both r(y) and λðtÞ are nonnegative, as in problem (3). Here, r
(y) represents cost for choosing y and λðtÞ represents revenue. So,
we call the problem as the cost minimization problem. Later, we will
discuss its application in the optimization of queueing systems. For
this problem, we have the results similar to those in Section 2 with
similar proof. In the following, we only give an outline. Let
Cðy; tÞ ¼ rðyÞ�yλðtÞ.

Lemma 4. For any y1; y2AΛ with y1oy2 and rðy1Þ4rðy2Þ,
Cðy1; tÞ4Cðy2; tÞ for all tAT . Hence, such point y1 would not be
optimal in problem (21).

From the lemma above, we delete all such points as y1 and let

Λ′≔fyAΛjthere is no y24y such that rðy2ÞorðyÞg:
Surely, Λ′ is a nonempty set and r(y) is increasing in yAΛ′.
Then, the minimization problem (21) is equivalent to the following
one:

inf
yAΛ′

frðyÞ�yλðtÞg; tAT : ð22Þ

Lemma 5. For any given y1, y2, y3AΛ′ with y1oy2oy3, letting
α¼ ðy3�y2Þ=ðy3�y1Þ, if rðy2Þ4αrðy1Þþð1�αÞrðy3Þ then Cðy2; tÞ4
maxfCðy1; tÞ;Cðy3; tÞg for all tAT . This means that y2 would not be
optimal for each tAT .

We call point y2 satisfying the condition given in Lemma 5 as a
concave point of r(y). So, we can delete all concave points in Λ′ and
thus we let

Λ″≔fyAΛ′jy is not a concave point of rðyÞg:

Therefore, the minimization problem (22), and so problems (21), is
equivalent to

inf
yAΛ″

frðyÞ�yλðtÞg; tAT : ð23Þ

Here, r(y) is increasing and convex, and so continuous in yAΛ″
from Hu and Meng (2000).

Let Λ″ be the closure set of Λ″. Then, we also consider the
problem

inf
yAΛ″

frðyÞ�yλðtÞg; tAT : ð24Þ

Let dn ¼ sup Λ″ and cn≔inf Λ″. We extend the cost function r(y)
from the domain Λ″ into the domain Λ″ in a natural way, and
further into the closed interval yA ½cn; dn� similar to that in (8).
Now, rnðyÞ is increasing and convex in ½cn; dn�, and we get the
following minimization problem:

inf
yA ½cn ;dn �

frnðyÞ�yλðtÞg; tAT : ð25Þ

Let YnðtÞ be the set optimal solutions for the problem above.
Therefore, we have the theorem similar to Theorem 1.

Theorem 4. (1) Any optimal solution of problem (21), (22), or (23)
remains optimal for problems (24) and (25).
(2) For each tAT , YnðtÞ \ Λ″ is the nonempty set of optimal

solutions for problem (24); when YnðtÞ \ Λ″a∅, each of its elements
is optimal for problems (21), (22) and (23).

5.2. Optimal service rate control in queueing systems

As an example of the parametric cost minimization problem,
we restudy the optimal service rate control in a M/M/1 system that
is studied in Lippman (1975). Here, (1) customers arrive according
to a Poisson process with rate λ; (2) the single server serves
customers with an exponential distributed time with rate μ, which
is chosen from a nonempty compact set Λ� ½0;μ� with μ40. All
the service times are independent with each other and also with
the arrival process. The holding cost rate h(i) is nonnegative,
increasing and convex. Moreover, there is a nonnegative service
cost rate cðμÞ when μAΛ is chosen.

Let Vs
αðiÞ be the minimal discounted cost in an infinite horizon

with a discount factor α40. Then applying Lippman's device, Vs
αðiÞ

satisfies the following optimality equation:

Vs
α ið Þ ¼ 1

Δþα
hðiÞþλVs

αðiþ1ÞþμVs
αðiÞþmin

μAΛ
gsαði;μÞ


 �
; iZ0;

ð26Þ
where Δ¼ λþμ, gsαð0;μÞ ¼ 0, gsαði;μÞ ¼ cðμÞ�μ½RþvsαðiÞ� and
vsαðiÞ≔Vs

αðiÞ�Vs
αði�1Þ for i40. Define μαðiÞ as the largest minimizer

in the optimality equation above. Under the condition that cðμÞ is
either continuous or increasing and left-continuous and hðiÞ ¼ hi
for some positive constant h, Lippman (1975) shows that Vs

αðiÞ is
convex in i and so the optimal service rate μαðiÞ is increasing in i.
However, it is not concerned how to compute μαðiÞ in the
literature.

Differently from the optimal arrival control discussed in Section
2.5, the minimization problem minμAΛ gsαði;μÞ here is fit into the
cost minimization problem (21). Thus, given any function cðμÞ, let
Λ′ be the subset of Λ and Λ″ be the subset of Λ′ according to those
in the last subsection. Since Λ is compact, both Λ′ and Λ″ are also
compact. So, from Theorem 4,

min
μAΛ

gsαði;μÞ ¼min
μAΛ′

gsαði;μÞ ¼ min
μAΛ″

gsαði;μÞ; iZ0: ð27Þ

Thus, we have the following proposition.

Proposition 4. Vs
αðiÞ is convex in i, the optimal service rate μαðiÞ is a

solution of c′ðμÞ ¼ RþvsαðiÞ in Λ″ and is increasing in i.
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The optimization problems similar to minλAΛgaαði; λÞ and
minμAΛgsαði;μÞ happen often in the optimal control in queueing
systems, e.g., those studied in Stidham and Weber (1989), Jo and
Stidham (1983) and Altman and Nain (1993). The transformation
presented in this paper can be applied to these problems. So,
the conditions presented in them can be ignored. Moreover, the
computation of the optimal policies is not concerned in the
literature of queueing systems.

6. Conclusions

In this paper, we present a parametric revenue maximization
problem as a uniform framework for several problems studied in
the literature. We transform the problem into an equivalent well
structured one in which the revenue function is regular (increas-
ing, continuous and concave), and so the problem becomes
analytically tractable. Hence, we no longer need the usual assump-
tions presented in the literature. We apply this transformation
method to study a continuous time revenue management without
the usual assumptions and we get the usual results. An example is
used to illustrate our method. Hence, we show the robustness of
the monotone properties to the demand function. The transforma-
tion is also used to study a parametric cost minimization problem.
We transform two optimal control problems of arrival rate and
service rate in queueing systems to be analytically tractable, which
has not been concerned in the literature. We also apply the
transformation method to a supply chain with price-only contract.

Further research may include applying this transformation to
other areas on revenue maximization problems, for example, in
auctions where IGFR is used. Also, it may be interesting to relax
assumptions and/or improve results for the other maximization
problems in revenue management, e.g., those discussed in Sec-
tions 3–5 in Gallego and van Ryzin (1994), and in the optimal
control of other queueing systems.
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