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1. Introduction

Revenue maximization problems appear frequently in the
literature, typically those on revenue management (Gallego and
van Ryzin, 1994), optimality of queueing systems (Lippman, 1975)
and supply chain management (Lariviere and Porteus, 2001).
To ensure these problems to be analytically tractable there often
needs some assumptions. Ziya et al. (2004) summarize and discuss
three famous assumptions presented in the literature. The first
two are the concavity of the revenue function with demand and
price, respectively, and the third is the increasing generalized
failure rate (IGFR) of the demand distribution function under
which the revenue function is unimodal. Ziya et al. (2004) show
that none of these assumptions implies any other. These assump-
tions appear in papers concerning revenue management, inven-
tory and pricing in supply chain management, network services,
auction and mechanism design, and price competition (Ziya et al.,
2004). However, we no longer need these assumptions, as shown
in this paper.

We first present a parametric revenue maximization problem
to unify several revenue maximization problems discussed in the
literature. Without the assumptions presented in the literature, we
transform the problem into an equivalent well structured one in
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which the revenue function is increasing, continuous and concave.
Thus, the resulting maximization problem is analytically tractable.
The transformation here is algorithmic. We illustrate the problem
and the results by an optimal arrival control in queueing systems,
which is not concerned in Ziya et al. (2004).

We then apply the transformation to study the continuous time
revenue management. Revenue management deals with pricing
and allocation problems in many industries of selling fixed stock
items over a finite horizon by controlling price. These industries
include airlines selling seats before planes' departing, hotels’
renting rooms before midnight, and retailers’ selling seasonal
items with long procurement lead time. The study on revenue
management dates back to Littlewood (1972) for a stochastic two-
fare and single-leg problem in the airlines. Li (1988) presents a
continuous time model with demand of a controlled Poisson
process. Gallego and van Ryzin (1994) study continuous time
revenue management, where demands (customers) arrive accord-
ing to a homogeneous Poisson process with price related demand
rate, and price is chosen from the set [0, co). They assume a regular
demand function, that is, the corresponding revenue function
(i.e., the demand rate times price) is a continuous, bounded and
concave function of the demand rate, and tends to zero as the
demand rate tends to zero. With the regular demand function,
they show monotonicity and concavity of the optimal expected
revenue and monotonicity of the optimal pricing policy.

The work of Gallego and van Ryzin (1994) has been extended
into several directions: (1) to relax the assumption of the regular
demand, for example, in Zhao and Zheng (2000) and Wei and
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Hu (2002); (2) to extend the allowable price set to a discrete set,
for example, in Chatwin (2000), Feng and Xiao (2000a, 2000b),
and Feng and Gallego (2000); (3) to study the revenue manage-
ment problems in network environments, for example, in Ge et al.
(2010), Dai et al. (2005), Graf and Kimms (2013); (4) to study the
multi-period revenue management, for example, in Talluri and
van Ryzin (2004) and Du et al. (2005); and (5) to study the
revenue management in competitive environments, for example,
in Netessine and Shumsky (2005), Hu et al. (2010), Huang et al.
(2013), and Wei et al. (2013).

We apply the transformation to study a continuous time
revenue management problem along the first and second direc-
tions pointed above. With a general demand function (that may be
neither decreasing nor concave) and an arbitrary allowable price
set (that can be, e.g., an interval, a discrete set, or even combina-
tion of intervals and discrete points), we show that the problem
can be transformed into an equivalent one, where the revenue
function is continuous and concave (i.e., the corresponding
demand function is regular) and increasing. Thus, directly citing
the results in the literature, e.g., Gallego and van Ryzin (1994) and
Wei and Hu (2002), we get the usual monotone properties of the
optimal policies and the concavity of the optimal value function.
Hence, these monotone properties are robust to demand function
and allowable price set.

The supply chain management is also an area concerning the
revenue maximization problems. Lariviere and Porteus (2001)
study a simple price-only contract where the manufacturer
decides a wholesale price first and then the retailer decides an
order quantity based on a random demand. The problem faced by
the manufacturer is complex. Under IGFR, they show that the
revenue function of the manufacturer is unimodal and then an
optimal solution can be obtained analytically. We re-study the
problem above and show that the manufacturer's problem can be
solved analytically without IGFR.

We extend the transformation method to study a parametric
cost minimization problem and get an equivalent one where the
cost function is increasing, continuous and convex. A typical
application of the cost minimization problem is the optimal
control of service rate in queueing systems. As said in Stidham
(2002), the Lippman device (Lippman, 1975) opened the gates for
the application of Markov decision processes theory to queueing
control problems. The idea of the Lippman device is to transform
the underlying Markov process into an equivalent one in which
the times between transitions are exponential random variables
with a constant parameter. By applying his device, Lippman (1975)
studies the optimization problems in exponential queueing sys-
tems. Later, for the optimal control problem of arrivals, Helm and
Waldmenn (1984) study a general framework with multi-server
queues in a random environment. For the optimal control of
service rate, Jo and Stidham (1983) study the optimization
problems in M/G/1. Stidham and Weber (1989) consider the
problem of controlling the service and/or arrival rates in queues,
with the objectives of minimizing the total expected cost to reach
state zero and average-cost minimization over an infinite horizon.
They prove that an optimal policy is monotonic in the number of
customers in the system. See the details in survey papers
(Stidham, 1985, 2002). However, in the literature, the analytical
tractability of the optimization problems is not concerned, though
is very important in computing optimal policies. Applying the
transformation method, we solve the analytical tractability for an
optimal service rate control in queueing systems.

The rest of the paper is organized as follows. In Section 2, we
present the model of a parametric revenue maximization problem
and transform it into an equivalent well structured one with a
regular revenue function. Then in Section 3, we apply the transfor-
mation to study a continuous time revenue management problem

without assumptions on the demand function. In Section 4, we apply
the transformation method to re-study a supply chain with price-
only contract. In Section 5, we generalize the transformation method
to study a cost minimization problem and apply it to an optimization
problem in queueing systems. Section 6 is a concluding section.

2. Parametric revenue maximization problem

In this section, we first present the model of the parametric
revenue maximization problem. Without the usual conditions
presented in the literature, we transform it into an equivalent
one where the revenue function is increasing, continuous and
concave.

2.1. Model

The model is based on a fairly standard price-demand for-
mulation for a product (or service). There is a known mathema-
tical relationship between price and demand. We let x denote
price and y denote demand (demand in one time period, or per
unit of time).

In the model, there is a parameter t from a nonempty set 7.
t may represent status for decision epoch. We require no structure
for 7 and so t may be multiple representing parameters. Suppose
that for each t, price x is chosen from a nonempty set P and
correspondingly a nonnegative demand d(x) is received (called the
demand function). It is initially assumed that P is a bounded set.
This assumption will be relaxed in Remark 4 below. Then, a
revenue d(x)x is received. Furthermore, there is a cost d(x)A(t)
after realizing the demand d(x) at t. Here, A(t) is nonnegative and
can be interpreted as unit opportunity cost for choosing x at t.
Hence, we get a profit d(x)x—d(x)A(t) (called as revenue function) if
x is choosing at t. We thus study the following parametric
maximization problem:

sup{dx)x—d(x)A(t)}, teT. (1)
xeP

Note that this is, in fact, a family of maximization problems. We
will give an example of A(t) in revenue management later. We
want to get an optimal solution x{ for problem (1) for each te 7.
For convenience, we say that x} is optimal for problem (1), or
simply optimal for problem (1) when no confusion is induced.

2.2. Transformation

We study the maximization problem (1) according to the
following steps. First, we reduce the price set P such that d(x) is
a one-to-one correspondence between price x and demand y:
y=d(x) and x = p(y) for some function p(y). So, we can transform
the decision variable from price x into demand y = d(x). Then, we
reduce the domain of the revenue function r(y):=yp(y) such that it
is increasing. Finally, we revise r(y) to be concave.

Step 1. An equivalent one with demand variable. Denote by
A ={d(x)|x € P} the set of demands that are allowable under some
price in P. For any given demand yeA, denote by P(y)=
{x e P|d(x) =y} the set of prices that yield demand y. Surely, the
set P(y) may include multiple prices. But it may suffice to consider
the largest one p(y):=sup P(y). The following lemma says that p(y)
is enough for the maximization problem (1) in the set P(y). We
denote by b(x, t) = d(x)x—d(x)A(t) for convenience.

Lemma 1. For any given y e A, suppose p(y) € P(y). Then, b(p(y), t) >
b(x, t) for all x e P(y) and t € T, where the equality holds if and only if
y=0 or x=p®y).
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Proof. For any given y e A, suppose p(y) e P(y). For any x e P(y),
because of d(x)=y and d(p(y))=y, we have b(x,t)=d(x)[x—A(
] =d(p®))x—At). Due to the maximum of p(y), we have
further b(x,t) <d(py)pY)—A(t)]=b(py).t) for teT. Certainly,
the inequality above becomes an equality if and only if y=0 or
X=py). O

The condition p(y) e P(y) given in the lemma above is reason-
able in practice. In fact, this condition is very weak, as shown in
the following remark.

Remark 1. We have p(y) e P(y) under any one of the following
conditions.

(a) P(y) is a finite set. This is true in many practical cases,
especially when P is finite.

(b) d(x) is continuous in a closed price set P. In this case, P(y) is
also a closed set and so p(y) e P(y) for each y e A.

(c) d(x) is decreasing (in a nonstrict meaning), left continuous,
bounded, and d(co):=limy_, ,,d(x) = 0. In this case, P(y) is also
closed for each y. Let D =d(0). Then, d(x) can be expressed by

d(x)=D(1-F(x)) forx>0 2)

where F(x) = P{£ < x} is a cumulative distributed function (d.f.)
for some random variable &. In this case, D may be interpreted
as the potential number of customers; if price is set as x, each
potential customer buys one item of the product with prob-
ability 1—F(x). Hence, d(x) is the expected demand given price
x, and F(-) is a cumulative distribution function representing
customers' willingness-to-pay. Hence, p(y) € P(y) for each y. In
Ziya et al. (2004), d(x), and so F(x), is further required to be
twice differential. o

Following the remark above, we assume p(y) e P(y) for each
y e A throughout this section. Due to Lemma 1, we take the price
set as Py = {p(y)|y e A}, a subset of the original set P. That is, the
maximization problem (1) is equivalent to the following one:
sup {d()[x—A(D]},

xePq

te7.

Now, there is a one-to-one correspondence between prices in
P, and demands in A, and p(y) is the reverse function of d(x). So,
we can alternatively take demand y as the decision variable.
Define the revenue as a function of demand by r(y) = yp(y). Hence,
the maximization problem (1) is equivalent to the following one:
sup{r(y)-yA@t)}, te”. 3
yeA
That is, x € P is an optimal solution of (1), if and only if y = d(x) is
an optimal solution of (3), for each te7. Here, the decision
variable is demand y, instead of price x in (1). We denote by
B(y,t) =r(y)—yA(t) for convenience. Surely, the function B(y,t) is
simpler than the original revenue function in (1). So, we deal with
(3) in the following.

Though the maximization problem (3) is derived from the
original problem (1), problem (3) itself may be an original one,
e.g., in the optimization of queueing systems studied in Lippman
(1975).

In the following we study the maximization problem (3)
without condition on r(y) and A.

Step 1I: Increasingness of the revenue function. First, we have the
following lemma.

Lemma 2. For any given demands y,,y,eA with y, <y, and
r(y1) >T1(3), By1,t) > B(y,,t) for all t e T. That is, such demand y,
would not be optimal in problem (3).

Proof. For any given y,,y, e A with y; <y, and r(y;) > r(y,), due
to the nonnegative nature of A(t), B(y;,t)=r(y;)—y14(t) >
1(y,)—Yy,A(t) = B(y,, t) for te 7. Hence, y, would not be optimal
foreacht. ©

We call y, e A a decreasing point of r(y) if there is y; e A such
that y; <y, and r(y,) > r(y,). Then, the lemma above tells us that
all decreasing points in A are not optimal, and thus can be
eliminated from the decision set A. We denote by A; the new
decision set after the elimination, i.e.,

Aq:={y e Aly is a nondecreasing point of r(y)}.

Surely, A is a nonempty set and r(y) is increasing in y e A;. When
r(y) is continuous in the closed set A, supA; achieves the
supremum of r(y) in y e A, i.e., r(sup Aq) = sup,, . 47().

Due to Lemma 2, the maximization problem (3), and then (1), is
equivalent to
sup {r(y)—yA(t)},

yel

teT. 4)

In fact, y e A is optimal for problem (3) if and only if y is optimal
for problem (4) and y € A. For each t e 7, let y*(t) be the largest
maximizer in (4) if it exists. Then, we have the following result.

Proposition 1. (1) The revenue function r(y) is increasing, and so is
continuous almost everywhere, in yeAy. (2) y*(t) is increasing
(or decreasing) in t if A(t) is decreasing (or increasing) and y*(t)
exists for each t.

Proof. (1) This is true from real theory (see, e.g., Zheng and Wang,
1980). (2) This follows from the well-known property of modular
functions (Topkis, 1998). ©

A(t) is increasing in many maximization problems, e.g., in the
revenue management, as discussed later. y*(t) exists if r(y) is
continuous in a closed set A;. Part (2) of the proposition above
tells us that when A(t) is monotone, the monotone of the optimal
solution is robust to the revenue function r(y). That is, whatever
the revenue function (or the demand function in (1)) is, the
optimal solution y*(t) to problem (3) increases (decreases) and
so p(y*(t)) is the optimal solution to problem (1) and is decreasing
(increasing) when A(t) is decreasing (increasing).

Step Ill: Concavity of the revenue function. For problem (4), we
further have the following lemma.

Lemma 3. For any given y,, y,, y3 € Ay with y, <y, <Yys, letting

a=y3=Y2)/Y3=y1), if 1) <ar(y)+(1-mr(ys) then B(y,,t)
< max{B(y;,t),B(ys,t)} for all t e 7. This means that y, would not
be optimal for each teT.

Proof. For any given y;, y,, y3eA; with y; <y, <y; and
a=(Y3-Y2)/¥3=Y1), Y2 =ay;+(1-a)ys. So, when r(y,) <ar(y;)
+(1-a)r(y;) we have
B(yy.t) =1(y2)—y, A1)
<ar(y)+1-arys)—ay, A —(1-a)ys At
= aB(y;, 0+ (1-@B(y3, 1)
< max{B(yy, 1), B(ys, )},

Hence, y, would not be optimal at any te 7. ©

te7.

We call point y,eA; a convex point of r(y) if there are
Y1.y3 € /A satisfying the condition given in Lemma 3. Then, the
lemma above tells us that any convex point of r(y) would not be
optimal for any t, and thus can be eliminated from the demand set
Aj. Denote by A, the demand set after this elimination, i.e.,

Ag:={y e A1)y is not a convex point of r(y)}.

According to Lemma 3, A, can be obtained as follows. For any two
points y;,y; € Ay, delete all points in the curve (y,r(y)) which are
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below the line from point (y;,r(y;)) to point (y,,r(y,)) until no
point can be deleted for arbitrary y; and ys. Certainly, if inf A; e A4
then infA; € A5, and also if sup A; € A; then sup A; € A,. So, when
A, is closed we have

inf Ay =inf Ay, supA;=supA,. 5)
Therefore, the maximization problem (4), and so problems
(3) and (1), is equivalent to

sup {r(y)—yA(t)}, teT. ©®)

yeh,

Here, r(y) is increasing and concave, and so continuous in y € A,
from Hu and Meng (2000). In this time, the objective function in
the problem above is continuous and then it achieves the max-
imum if the domain A, is closed. We let A, be the closure set of
A,. The value of r(y) in y e A,—A, can be well defined since r(y) is
continuous in y € A,. In fact, for any y, e A,—A, with any sequence
{y,,} in A, satisfying y, —y,, it is easy to get from the continuity of r
(y) that ro:=lim, _, ,,1(y,) exists uniquely and is independent of the
sequence {y,}. So, we define r(y,) =ro. Therefore, we extend the
revenue function r(y) into the domain A,. Due to (5), when A; is
closed we have also that inf A; =inf A, and sup A; =sup A,.
Then, we introduce the following problem with the same objective
function as in (6) but an extended domain A,:

sup {r(y)—-yAt)}, te7. (7)

yely

From real theory (see Zheng and Wang, 1980), A, = {Ji[a:, bi]
with some constants 0<a; <b; < a; <by-- <d*, where d*=
sup A,. Let c*:=inf A be the lowest allowable demand. If c*eA
then c* is surely neither a decreasing point nor a convex point, i.e.,
c* e A, and a; = ¢*. Certainly, A, C [c*,d*] and c*,d* e A,.

We further extend the revenue function r(y) from the domain
yeA, into the closed interval y e [c*, d*] as follows:

aisysbi, i=1,2,...

. r(y)
r (y)_{ﬁir(bi)+(l_ﬂi)r(ai+1) bi<y<ajq, i=1,2,... ®)

where f; = (a;;1—Y)/(a;, 1—b;). This extension is unique.
Due to Proposition 1 and Lemma 3, we have apparently the
following proposition.

Proposition 2. The revenue function r*(y) is increasing, continuous
and concave in y € [c*, d"].

The definition of the regular demand functions given in Gallego
and van Ryzin (1994) does not require the increasingness. Based
on the proposition above, we call a revenue function is regular if it
is increasing, continuous and concave. Then, r*(y) is now regular.

With the regular revenue function r*(y), we consider the
following maximization problem:

sup {r*()—-yA)}, teT. 9
yelcxd’]

For each te7, the objective function above is concave and
continuous in the closed interval [c* d*]. So, there are optimal
solutions, the set of which may be an interval, denoted by Y*(t).
Now, Y*(t) can be obtained by solving the first order condition of
(9), i.e., (d/dy)yr*(y) = At) for te 7.

In some case, we can take c* =0 in the above proposition.

Remark 2. When for each te7 there is ye[c*,d*] such that
r*(y)—yA(t) >0, we can add zero to A, without changing the
optimality of problem (6). Thus, we can take ¢* =0 and r*(y) can
be extended to the domain [0, d*], as done in (8). ©

2.3. Equivalent results

We have established the equivalence of the optimal solutions
among problems (1), (3), (4), and (6). But we have not extend such
an equivalence to problem (7) or (9). Overall, we have the
following theorem.

Theorem 1. (1) Any optimal solution of problem (3), (4) or (6)
remains optimal for problems (7) and (9).

(2) For each teT, Y*(t) N A, is the nonempty set of optimal
solutions for problem (7). Moreover, when Y*(t) N A, is nonempty,
each of its elements is optimal for problems (3), (4) and (6).

Proof. (1) It is obvious from the previous discussions.

(2) Given t, let B*(y,t)=r*y)—yA(t). For any y°e[c* d*]-A,,
there must exist ie{1,2,...} such that b;<y®<a;,;. Let f=
(@i+1-Y°)/(@i1—by). Then, y°=pb;+(1—p)a;.;. Due to (8) and
(9) we have that

B*(y°., t) = pr(by)+ (1=Pyr(a; . 1)—y°At)
= prb)+A=Pr(a; 1) —pbidt)—(1—Pai 1 A)
= fB*(bi, )+ (1—f)B*(aj +1, 1)
< max{B*(b;, t), B*(a;, 1, 1)}

where the inequality follows due to /3 € (0, 1). The inequality above
becomes an equality if and only if B*(b;, t) = B*(a;, 1, t). Hence, both
b; and a;,; are optimal when y° is optimal. This shows that Y*(t)
NA, is nonempty. Then, the remaining result is clear from (1). ©

The theorem above tells us two things. One is that any optimal
solution of the original problem (3) remains optimal for problem
(9). So, if there is an optimal solution of (3) then problem (9) must
have optimal solutions. The other is that if Y*(t) n A, is empty
then the original problem (3) has no optimal solution; otherwise,
each one in Y*(t) N A, is optimal for problems (3), (4), (6) and (7).

In what follows, we consider a case where A(t) >0 forall te 7.
First, we note that for this case, Lemma 2 can be revised as follows
with exactly the same proof: for any y;,y, e A with y; <y, and
r(y;) >1(y,), we have B(y;,t)>B(y,,t) for all t>0. We then
redefine the decreasing points as such y,. Thus, after eliminating
all decreasing points, the revenue function r(y) is strictly increas-
ing in y e A; and so does in y e A, and in y e A,.

With this revision, r*(y) is strictly increasing in [c*,d*] and
continuous and so bounded. Then, the maximization problem (9)
has the unique optimal solution, denoted by y*(t), for each te 7.
Therefore, we have the following corollary immediately from
Theorem 1.

Corollary 1. Suppose A(t) > 0 for all t € T. Then, for each t € T there
exists the unique solution y*(t) of the maximization problem (9).
Moreover, y*(t) is the unique optimal solution of the maximization
problem (3), if and only if y*(t)e A;. ©

If the original maximization problem is (1) and it has optimal
solutions, for example, when d(x) is continuous in the closed set P
(this is often assumed in the literature). Then we have the
following corollary.

Corollary 2. Suppose A(t)>0 for all te7 and problem (1) has
optimal solutions. Then, for each t e T, p(y*(t)) is the optimal solution
of the maximization problem (1), if and only if y*(t) is the optimal
solution of the maximization problem (9),. ©

It should be noted that in the above steps, the revenue r*(y) and
the interval [c*,d"] are all independent of t.
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2.4. Algorithms

In this subsection, we present an algorithm to compute A; and
A, when r(y) is continuously twice differentiable. In this case, the
computation of A; and A, becomes simpler.

First, suppose r(y) is continuously differentiable in a closed set
A.Then, A; can be obtained by a simpler method as follows. In this
case, r'(y) is continuous in y € A, and so r(y) is increasing in some
intervals and decreasing in other intervals. Thus, we can delete all
those intervals in which r(y) is decreasing. The remaining part of A
consists of several intervals in which r(y) is increasing. For these
intervals, let [a], b'l] be the first one. (Note: If r(y) is decreasing at c*
then a;, =b; =c*) Then, all points a> b satisfying r(a)<r(b;)
should further be deleted. If the remaining part of A is nonempty,
we denote by [a),b,] the first interval. Again all points a > b,
satisfying r(a) < r(b'2) should be deleted, and so on. Finally, we have
A1 =1[d},b}]U [a),by] U -, union of possibly finite or infinite
intervals. Since demand is often bounded above, we assume for
convenience A; =[aj,b;] U [dy,b,] U - U [a,,b,] with finite inter-
vals. However, the infinite setting can be studied similarly and all
results are still true in the following.

Suppose further r(y) is continuously twice differentiable in
y e Aq. In this case, '(y) is continuous, and so r'(y) is decreasing (or
equivalently r(y) is concave) in some intervals and is increasing
(or r(y) is convex) in other intervals. Similar to A, we let /\'2 be the
subset of A; in which r'(y) is decreasing, i.e., Ay:={y e A[r'(y) is
decreasing at y}=[a"1,b"1] U [a"2,b"2] U - U [a"y, b"y]. Then, 1(y)
is increasingly concave in each interval [a”;, b”;], but not necessarily
concave in A,.

It is obvious that r*(y) is concave in A’2 if and only if

- r(a;le)—r(Hb;) > r(a

r(y) <0, ye[a,ﬁ',b,ﬁ}; r(bl) pa— a.,) Vi=1,2,..n

iv1 P

(10)

Since r(y) is concave in each interval in A'2, we have the
following algorithm.

Algorithm 1. Compute A, from A, =[a"y,b"1] U [a"2,b"2] U - U
[a’n,b"y] for n>2 provided that r(y) is continuously twice
differentiable.

Step O: Let i=1.

Step 1: Let 6 = (r(a";;.)—r(b"))/(@ i1 1—b").

Step 2: (1) If r((;)<é then solve (r@’ii1)-ry))
/@it1=y)=1'(y) in [a";,b"). If there is a solution y¥ of the
equation in [a”;,b”;), then let b”,»/:y;"; otherwise, if i=1 let
b’i=a";, else delete [a”;,b”;] from A, and stop when i=n—1. Let
i=i+1. Goto Step 1.

(2) If r(a"j.1)>9, then solve (r(y)—r(b";))/(y—b";)=1'(y) in
[@"i4+1,b"i41). If there is a solution yf , of the equation in
[@”i+1,b"i+1), then let a’; 4 =y7, ;; otherwise, if i=n let a’j, 1=
b”i,1 and stop, else delete [a”;,1,b"; 1] from A, and stop when
i=n-1.Leti=i+1. Goto Step 1.

It is clear that we get A, when Algorithm 1 stops.
We give the following remark about the concavity of r(y).

Remark 3. (1) The complexity of Algorithm 1 mainly depends on
solving the two equations in Step 2. If there is no analytic methods
to solve these two equations, we need to solve them numerically.
However, once r*(y) is obtained, the maximum of r*(y)—yA(t) can
be solved analytically for all te7. Hence, this algorithm has
advantage over the numerical computation when the parameter
set 7 is large, e.g.,, an interval. On the other hand, it is easy to
perform Algorithm 1 in many cases, as done in the example
discussed in Section 3.3.

(2) It may be not necessary to compute A, and r*(y). In fact, we
can stop our steps whenever we can solve optimal solutions of

problem (3), (4), (6), (7) and (9), or

sup {r(y)—yA(t)}, te”. an
yeh,

If we can get an optimal solution for any problem above then we
no longer compute A, to solve the problem (9). ©

Finally, we give the following remark for the unboundedness of
the price set P.

Remark 4. Suppose the price set P is unbounded. It is further
assumed that limy_,.xd(x)=0, as usual in the literature, e.g.,
Gallego and van Ryzin (1994). Thus, limy_.d(x)=0 and so
c*=inf A =0. We then define r(0):=lim,_, or(y) = limy_, o.xd(x) = 0.
Furthermore, the objective in problem (1) is positive when x > A(t).
This implies that the objective in problem (3) is positive at some y.
Therefore, y=0 would not be optimal for problem (3), and so we
can assume that 0 e A in (3). Then, all results in this section are
true. O

2.5. Optimal arrival control in queueing systems

As an example to illustrate our problem and results discussed
in the previous subsections, we restudy the optimal arrival control
in a M/M/K system that is studied in Lippman (1975). This problem
is not concerned in Ziya et al. (2004). Here, (1) customers arrive
according to a Poisson process with rate A, which is chosen from a
nonempty compact set A c [0, 1] with 4 being a finite and positive
constant; (2) each of K servers serves customers with an expo-
nential distributed time with rate u. All the service times are
independent with each other and also with the arrival process. The
holding cost rate h(i) when the queue length is i (i.e., i customers
in the system) is nonnegative, increasing and convex. On the other
hand, the system incurs a nonnegative reward rate q(1) when 1 e A
is chosen.

Let V(i) be the minimal discounted cost in an infinite horizon
with a discount factor @ > 0. Then applying the Lippman's device,
V(i) satisfies the following optimality equation:

. 1 . . . . .
Ve(i) = m{h(l) +u(i AKVEI—1)+ [A—p(i A K)] V5D }

+Lmingg(i,/1), i>0, (12)

A+adica
where A=A+ukK, gi(i,A)=—-AqA)+%i+1) and vi(i+1)=
Va(i+1)-Vi(i). Define A,(i) as the largest minimizer in the
optimality equation above. Lippman (1975) shows that if (1) is
either continuous or decreasing and right-continuous, then V(i) is
convex in i and so A,4(i) is decreasing in i. In Lippman (1975), the
right continuity of q(4) ensures the existence of A,(i) and the
decreasingness of q(4) ensures the monotone of A,(i). However,
both the existence and monotone of 1,(i) are ensured when q(A) is
continuous. Furthermore, it is not concerned how to compute A, (i)
in the literature.

Since min,g4(i, /) = —max,{Aq(1)—Av%(i+ 1)}, the minimization
problem min,g,(i,4) in (12) can be fit into the problem (3). Given
any function q(A), let A be the subset of A consisting of nondecreas-
ing points of Aq(4) and A, be the subset of A; consisting of concave
points of Ag(A). Since A is compact, due to Theorem 1,

Eﬂeigl g5, ) :}1;1/{11 8531, A) =lr1€11An2 g, i=1. (13)
So, the following proposition is clear from Proposition 1 and
Theorem 1.

Proposition 3. V(i) is convex in i, A.(i) is a solution of
(Aq(A)) =vi(i+1) in A, and is decreasing in i.
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Only the monotone of the optimal policies is studied in the
literature of optimization in queueing systems. We show this is
true without any condition on g(4). Moreover, it is not concerned
how to compute the optimal arrival rate A,(i), which is now the
solution of (Aq(A))’ =v4(i+1) in A,.

3. Revenue management with dynamic pricing

In this section, we apply the transformation presented in
Section 2 to study a revenue management with continuous time
dynamic pricing.

3.1. Model

The problem we considered here is formulated as follows. The
retailer has a stock of N items and wants to sell them during a
finite time horizon T. At any time, the retailer chooses one price
from an allowable price set P, which is arbitrary but nonempty.
Demand arrives according to a nonhomogeneous Poisson process
with a time-dependent demand intensity (or demand rate),
denoted by d,(x), a function of price x. We only assume that d,(x)
satisfies the condition given in Lemma 1. (This problem with the
homogeneous demand is first studied by Gallego and van Ryzin,
1994).

Let N; be the number of items sold out up to time t. A pricing
policy is defined as a function y = (x;,0 <t < T), with x; e P for all ¢,
satisfying foT dN; < N. This inequality means that the total number
of items sold out must be less than or equal to N, the initial
number hold in the retailer. The set of all pricing policies is
denoted by U. For any given u e U, the expected total revenue of
the retailer by using pricing policy x in the time period [0, t] with
the initial stock number n is

ot
]ﬂ(n,t)zEﬂ{/ xsts}, 0<t<T, n=0, 1,...,N.
0

Surely, we have the boundary conditions J,(n,0)= 0 and J,(0,t) =
0, which mean that no value remains if there remains no items or
no time for selling.

The retailer's problem is to find a pricing policy that maximizes
the expected total revenue over the policy set U: J(n,t)=
sup, c uf,(n, t). Here, J(n,t) is called the optimal value function. It
is well-known that J(n,t) satisfies the following equation (the
Hamilton-Jacobi Bellman (HJB) equation in Gihman and Skorohod,
1979, or the optimality equation in continuous time Markov
decision process in Hu, 1993):

%: sup{di(x)[x—AJ(n,t)]}, teT, n=0,1,2,..,N (14)
xeP

where AJ(n,t)=](n,t)—J(n—1,t) is the marginal revenue at time t
with n items. Let x*(n,t) be the largest maximizer in (14). Then,
x*(n,t) is an optimal price of the retailer at (n, t).

In the following subsection, we study the problem (14) above
for the homogeneous demand case and the nonhomogeneous
demand case, respectively, by applying the transformation pre-
sented in Section 2.

3.2. Results

Since the demand function d,(x) depends on t, we know from
Section 2 that for each t there are constants 0<ci<d and a
regular revenue rate function r#(y) such that J(n, t) satisfies the HJB
equation (14) if and only if it satisfies the following HJB equation:

aJ(n,t) _

o sup {r;(y)-yAJ(n,0},

yelcrd]

te[0,T, n=1,2,...N, (15)

where r#(y) is strictly increasing and concave in y, and the optimal
demand rate y*(n,t) is the unique maximizer in (15). The unique
difference between Egs. (15) and (14) is that the revenue and
decision sets in Eq. (15) are dependent of the time variable t. We
take price x instead of demand rate y as the decision variable.
Then, Eq. (15) is equivalent to

w: sup {djx)[x-AJn, 0]}, te[0.T], n=1,2,...,N

X € [Pe1:Pr2]
where df(x) is the demand function, defined as the reverse of the
function r#(y)/y, and py, = ri(d})/d; and p,, = r(c¥)/c*. Apparently,
J(n,t) is increasing in t and so 9J(n,t)/dt > 0. Thus, there must be
Xe[py,Pp] such that df(x)[x—AJ(n,t)]=0. Therefore, the HJB
equation above is further equivalent to

aJJ(n,t)
at

=sup{d{x) [x-AJ(n,t)]}, te[0,T, n=1,2,..,N (16)
x>0

where we define d(x) = 0 if X¢[p,1, i) In the equation above, the
price is constrained only to be nonnegative. Then, the optimal
price x*(n,t) is the unique maximizer in (16), due to the unique
maximizer of (15). It should be noted that Eq. (16) has the same
form as the original HJB equation (14). But, here the price set is
[0,00) and d(x) is regular due to Proposition 2. Obviously,
Eq. (16) is exactly equation (4) in Wei and Hu (2002). Hence, we
have the following results from Theorems 1, 5, and 6 in Wei and
Hu (2002).

Theorem 2. For any given t, the optimal expected revenue function
J(n,t) is increasing and concave in n, the optimal pricing policy
x*(n,t) is decreasing in n, and the optimal demand rate y*(n,t) is
increasing in n. Moreover, x*(n,t) is increasing in t when
d¥(x1)/d}(x,) is increasing in t for each given x; > X,.

The theorem above implies that the more the remaining items
are, the lower the price will be, and under the given condition on
df(x) in the theorem, the longer the selling horizon is, the higher
the price will be.

It is interesting that we used the transformation method twice
above: first to derive Eq. (15) from (14) and second to derive
Eq. (16) from (15).

When the demand function is homogeneous, i.e., d:(x) = d(x) is
irrespective of t, all ¢¥, d}, r¥(y) in (15) are homogeneous, denoted
by c*,d* r*(y), respectively. In fact, ¢*=infy.pd(x) and d*=
arg sup yp(y). So, HJB equation (15) is exactly equation (8) in
Gallego and van Ryzin (1994). Thus, the following corollary follows
from Theorem 1 there.

Corollary 3. When the demand is homogeneous, J(n, t) is increasing
and concave in t, both Aj(n,t) and x*(n,t) are increasing in t, but
y*(n,t) is decreasing in t.

In Theorem 2 and Corollary 3, we show monotone properties of
the optimal demand rate and the optimal price. These are shown
in the literature under the condition that the demand function is
regular (Gallego and van Ryzin, 1994). Our results imply that these
monotone properties are robust to the demand function (together
with the price set). This is true, in fact, irrespective of the
regularity of the demand function, as shown in Proposition 1.
The regularity is to ensure that the optimal solution can be
obtained from the first order condition.

In Section 2, the demand function d(x) and the revenue
function r(y) are independent of the parameter. Here, we general-
ize the transformation to the case where d/(x) and r(y) depend on
the parameter t.
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0 1 15 2 3 4 5

Fig. 1. The demand function d(x).

0 0.1 02e™® 0.3 y'e' 0.4

Fig. 2. The revenue function r(y).

3.3. An example

Consider a homogeneous revenue management problem where
the price set is P=[0, o) and the demand rate function is

oo — min{e¥2,e*}, x<1, x>15
W=1 15, 1<x<15.

Here, d(x) is neither increasing nor decreasing (see Fig. 1). In fact,
d(x) =e*~2 is increasing in x < 1; d(x) = e~' remains a constant in
x e (1,1.5]; while d(x) =e™* is decreasing in x > 1.5. We apply the
transformation for this problem in the following.

The value region of d(x) is A =(0,e~']. For y e (0,e~17), P(y) =
(-Iny} and so py)=-lny; for yel[e'7,e —15).Py)=
{—Iny,2+Iny} and so p(y)=-Iny; for y=e 13 P(y)=(1,1.5]
and so p(y)=1.5=—Iny; while for ye (e 1°,e 1, P(y) = (2+Iny}
and so p(y) = 2+In y. Thus, the revenue function with y is given by

—ylny, ye(0,e17]
W=\ y2+Iny), yee'Se]

See r(y) in Fig. 2.
Therefore, the HJB equation (14) for the problem here is
equivalent to the following one:

aJ(n,t) _

sup {ry)—-yAJ(n,t)}, te[0,TL, n=1,2,...,N.
ot cOe ]

y
Moreover, since limy,_o,.yIny=0, r(y) is strictly increasing in
ye(0,e7 3] and in y e (e, e~1], but decreasing at y =e~1>. Let y*
be the unique solution of equation r(y)=r(e~'°—)=1.5e"1> in
ye(e 13, e 1, ie, y*2+Iny*)=1.5e"'°. Then y*~0.3511 <e~!.
Therefore, Ay =(0,e~1°]U (y*, e!]. Obviously, r(y) is concave in
y e (0,e~13] but convex in y e (y*,e~']. Thus, A, = (0,e"'] U {e~'}.
So, we can limit us to consider the optimal solution for the HJB
equation in the set A,. That is, it suffices to consider the HJB
equation

gm0 _ sup  {r@)-yAj(n, 0},

te[0,T], n=1,2,...,N.
at ye e 15ufe-)

We do not need to compute r*(y) and c*,d* here. It is easy to see
that the optimal solution for the HJB equation above is

e! if AJ(n,t) <(€%>—1.5)/(e%>—1)
yim,ty={ e 1> if (e%°—1.5)/(e®>-1)< AJ(n,t) < 0.5

e 1AM if AJ(n,t)>0.5.

Thus, the optimal price is

1 if AJ(n,t) < (e%°—1.5)/(e%—1)
X*(n,t) =py*(n,t))=< 1.5 if (e%°—1.5)/(e%>-1)< AJ(n,t)<0.5
1+AJ(n,t) if Aj(n,t)=0.5.

So, for t€[0,T], n=1,2,...,N,

e 1[1-Aj(n, t)]
e 15[1.5-AJ(n, )]
e—l—A](n,[)

if AJ(n,1) < (e°5-1.5)/(e%°—1)
if (€%°~1.5)/(e%~1) < Aj(n,t) <0.5
if AJ(n,t)>0.5.

dn,t)
ot

Since AJ(n, t) is increasing in t, for each n there exist t};; <t?%, such

that AJ(n, t%,) = (e%°—~1.5)/(e%>—1) and AJ(n, t},)=0.5. So,

n n

e '1-AJm,n]  ifr<ty
IO _ ) e15015- A, 0] if € <t<th
ot e—1-AJmD if t>th,.

Due to J(0,t)=0, the above differential equation can be solved
iteratively forn=1,2,...,N.

For example, for n=1, J(0,t)=0,J(1,t)= AJ(1,t). Solving the
differential equation 9/(1,t)/dt =e~'[1—J(1,t)] with the boundary
condition J(1,0)=0 we get' J(1,t)=1—e=¢"t. Solving J(1,t)=
(€%°—1.5)/(e%>—1) we get ti, = —e In(2(e>>—1)) ~ 0.708.

Then, solving the differential equation oJ(1,t)/ot =1.5e~ 1
—e 15](1,t),t > t¥, with the boundary condition J(1,t};)=
(€%°—1.5)/(e% —1) we get

t
JA, =], t5)e e Tt [ eme (=91 50715 (s

. [f
= [](1, t)ﬁ)*] -5]@7971'5(“[71) +1.5.

Solving J(1,t)=0.5 for
In(2(1—e%%)) ~ 1.782.
Finally, solving the differential equation 9J(1,t)
/ot =e~17J10 t > t*, with the boundary condition J(1,t%,) =0.5
we get J(1,t) = In[e~!(t—t,)+€%>] for t > t,. Therefore, we have

t>th, we get tf,=ti—eld

1—e et if t<t¥,
Ja,65)-1.5e ¢ "5 15 if ¢, <t<th,
Infe~1(t—t%,)+e%3] if t>1t%,.

Ja,p=

Figs. 3 and 4 give the optimal price x*(n, t) and the maximum
expected total revenue J(n, t) with t =10,20,30and n=1, 2, ..., 10,
respectively. The results perfectly illustrate our conclusions as
shown in Theorem 2 and Corollary 3.

The computation for the example above shows that it is easy to
implement our transformation. On the contrary, it is difficult to
solve directly the revenue maximization problem (14) even for
de(x) =d(x).

4. A supply chain with price-only contract

Assumption IGFR is also used in Lariviere and Porteus (2001)
for a supply chain with price-only contract for one period. The
supply chain consists of one manufacturer and one retailer. The
manufacturer, as the game's leader, produces the product with a

! The solution for the differential equation f'(t)=a(t)f(t)+b(t) with the

boundary condition f(tg) =y, is f(t) =yue'/‘0 o dx+ ]f(, el “b(s) ds, t = to.
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Fig. 3. The optimal price x*(n, t).
12 4
J(n,t)
10 1 t=30

t=20
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/ =10
2]
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Fig. 4. The maximum revenue J(n, t).

unit cost ¢ and determines first the wholesale price w to sell her
products to the retailer. The retailer, as the follower, determines
his order quantity g, or equivalently the inventory level y after the
order, based on the wholesale price w. The demand D at the
retailer is a random variable with d.f. F(-). The retail price r > c is
exogenous. It is further assumed that the salvage value of unsold
products at the end of the period is zero and unmet demands are
lost. Let F~!(-) be the reverse function of F(-) and F(y) = 1—F(y).

For any given wholesale price w <, the retailer faces a news-
vendor problem with the expected profit

ITr(y) = —wy+1E min{y,D} = —wy+r /.yx dF(x)+TrF(y). 17)
JO

It is well-known that the retailer's optimal inventory level is
y(w) =F~((r—w)/r) given w.

Therefore, the manufacturer's demand is y(w) and his profit is
Iy (w) = (w—c)y(w), whenever his wholesale price is w. So, his
problem is
(max Tlu(w)=w—cyw). (18)
Since y(w) has the reverse function w(y):=rF(y), we can take y as
the decision variable, instead of w, for the manufacturer. Therefore,
the problem (18) becomes equivalently

ryﬂ;gﬁﬂm(v) =Ry)—cy, (19)

where R(y)=ryF(y) is the revenue function when the retailer's
inventory level is y.

Lariviere and Porteus (2001) shows that under Assumption
IGFR (i.e., F is IGFR) and F(-) is derivative, I1y(y) is a unimodal
function, and therefore the optimal solutions can be obtained
easily. But IGFR is not needed if our transformation method is
applied. By letting 7 = {0} be a singleton and A(t) = ¢, we see that

problem (19) is exactly problem (3). Then, from Corollary 1 we can
get the following theorem. Here, c* = inf A =0 due to A =0, c0).

Theorem 3. There is a revenue function R*(y), which is continuous,
strictly increasing and concave, such that problem (19) is equivalent
to the following one with d* = arg sup, - oR(Y):

max {R*(y)—cy}. (20)
ye[0.di

Here, R*(y)—cy is continuous and concave. So, the above
problem can be solved by solving its first order condition. Another
advantage of problem (20) prior to problem (19) is that the
domain here is a finite interval [0, d*].

Since there is no parameter t here, it is not necessary to
construct R*(y). In fact, we can simplify the steps in Algorithm 1
for computing the optimal solution of (19).

Algorithm 2. Solving problem (19). (1) (Since the first order
condition of (19) is R'(y)=c, its solutions must lie in A;.) If
R'(y)=c has the unique solution y* then it suffices to judge
R"(y*) <0. When R’(y*) <0, y* is the optimal solution of (19);
otherwise (19) has no optimal solution.

(2) If R'(y) =0 has multiple solutions, we compute A,. Due to
Theorem 1, any solution of R'(y) =0 in A, is optimal for problem
(19); otherwise if there is no solution of R'(y) =0 in A,, then (19)
has no optimal solution.

We consider two examples in the following to illustrate how to
solve problem (19), for continuous type and discrete type random
demands, respectively.

Example 1. The d.f. F(y) of the demand and then the revenue
function R(y) are, respectively,

0, O<y<1, 1y, 0<y<1
1.1 I(y-i,-]) 1<y<2
Fyy=q2 & Ry)=yFp) =327 = T
3 >2 3713’ y>2
-1 V7o 4y-17 7

Surely, R(y) is increasing in y<2 and decreasing in y >2. So,
Ay =10,2]. Moreover, A, =A, =A; =[0,2]. So, R(y)—cy is concave
iny [0, 2]. Now, (d/dy)[R(y)—cyl =r—cfor 0 <y <1 and =ir—c for
1<y <2. Due to r > c, we know that the optimal solution is y=1
when c<r<2c is y=2 when r>2c, and is any y e[1,2] when
r=2c o

The assumption of IGFR is not true here. In fact, its generalized
failure rate is e(y)=0 for O<y<1,e(y)=1/y(y+1) for 1<y<2,
and e(y) =y/2(y—1) for y > 2. Surely, e(y) is strictly decreasing in
ye[l,2) and in y > 2, but increasing only at y=2.

Hence, the example above illustrates that our method can be
applied to cases where IGFR is not true and the generalized failure
rate e(x) may be strictly decreasing at the optimal solutions.
Moreover, the IGFR needs that the d.f. is continuous type, but
the method in this paper can unify the continuous and discrete
types of d.f.s.

At the end of this section, we give the following example,
which shows that the maximization problem (19) for the manu-
facturer may have no optimal solution for discrete type demand if
the d.f. is defined by F(x) = P{£ <x]}.

Example 2. Consider the demand variable with probability
PE=1}=1/6,P((=2}=1/2,P{(=3}=1/3. The d.f of the
demand is defined by F(y) = P{£ <y}, which is right continuous.
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Then, Fy) and the revenue function R(y) are, respectively,

0, y<1, y, y<l1

%, 1<y<2, 7 gry, 1<y<2
Fy)= 2 Ry)=ryF(y)= 1

3 2<y<3, §ry, 2<y<3

1, y=3, 0, y=3.

Then, A;=[0,1)U [§2), A, =[0,1), and R*(y)=1yF(y)=ry for
yeA,=[0,1]. Obviously, the optimal solution of maxy < o.1]
(R*(y)—cy} is 1 when r> c. But due to Theorem 1, the original
maximization problem (19) in this example has no optimal
solution (in fact, the maximum value of the objective R(y)—cy is
achieved when y—2— from the left side of point 2).

The example above indicates a fact that when F(y) is increasing
and right-continuous (a discrete type d.f.), problem (19) may have
no optimal solution and the optimal solution of (20) may be not in
Aj. This differs from the case when F is a continuous type d.f. for
which the objective function is continuous and so there must have
optimal solutions for (19).

5. Extension to a parametric cost minimization problem

In this section, we extend the transformation method pre-
sented in Section 2 to a parametric cost minimization problem.
This is further illustrated by the optimal service rate control in a
queueing system.

5.1. Parametric cost minimization problem

We consider the following problem:

inf {r(y)—yA(t)}, teT, 21
yeA

where both r(y) and A(t) are nonnegative, as in problem (3). Here, r
(y) represents cost for choosing y and A(t) represents revenue. So,
we call the problem as the cost minimization problem. Later, we will
discuss its application in the optimization of queueing systems. For
this problem, we have the results similar to those in Section 2 with
similar proof. In the following, we only give an outline. Let
Cy, t) =r(y)—yA).

Lemma 4. For any y;,y,eA with y, <y, and r(y;)>r1Qy,),
C(yq,t) > C(y,,t) for all teT. Hence, such point y; would not be
optimal in problem (21).

From the lemma above, we delete all such points as y; and let
A’:={y e A|there is no y, >y such that r(y,) <r(y)}.

Surely, A’ is a nonempty set and r(y) is increasing in yeA'.
Then, the minimization problem (21) is equivalent to the following
one:

in/f‘ {r(y)—yAt)}, teT. (22)
yeA

Lemma 5. For any given y, y,, ¥3 € A’ with y, <y, <y, letting
a=y3=Y2)/ 3=y, if 1(y2) > ar(yy)+(1—-a)r(y;) then C(y,,t)>
max{C(y;,t),C(ys,t)} for all t e T. This means that y, would not be
optimal for each te T.

We call point y, satisfying the condition given in Lemma 5 as a
concave point of 1(y). So, we can delete all concave points in A" and
thus we let

A":={y e A'ly is not a concave point of r(y)}.

Therefore, the minimization problem (22), and so problems (21), is
equivalent to

inf (r()-yA©). teT. (23)
yeA

Here, 1(y) is increasing and convex, and so continuous in y e A”
from Hu and Meng (2000).

Let A" be the closure set of A”. Then, we also consider the
problem

inf {r(y)—yAt)), teT. (24)
yeA”

Let d* = sup A” and c*:=inf A”. We extend the cost function r(y)
from the domain A” into the domain A” in a natural way, and
further into the closed interval y e [c*,d"] similar to that in (8).
Now, r#(y) is increasing and convex in [c* d*], and we get the
following minimization problem:

inf {r*(y)—yAt)), teT. (25)
yelesd
Let Y*(t) be the set optimal solutions for the problem above.
Therefore, we have the theorem similar to Theorem 1.

Theorem 4. (1) Any optimal solution of problem (21), (22), or (23)
remains optimal for problems (24) and (25).

(2) For each teT, Y*(t) N A” is the nonempty set of optimal
solutions for problem (24); when Y*(t) N A” # @, each of its elements
is optimal for problems (21), (22) and (23).

5.2. Optimal service rate control in queueing systems

As an example of the parametric cost minimization problem,
we restudy the optimal service rate control in a M/M/1 system that
is studied in Lippman (1975). Here, (1) customers arrive according
to a Poisson process with rate A; (2) the single server serves
customers with an exponential distributed time with rate y, which
is chosen from a nonempty compact set A c [0, ] with z > 0. All
the service times are independent with each other and also with
the arrival process. The holding cost rate h(i) is nonnegative,
increasing and convex. Moreover, there is a nonnegative service
cost rate c(u) when u e A is chosen.

Let V3 (i) be the minimal discounted cost in an infinite horizon
with a discount factor @ > 0. Then applying Lippman's device, V5(i)
satisfies the following optimality equation:

s 1 . s IR ) .
V(D) —m{h(l)HVa(H H+pu Va(l)+lrp€1§\1 gf,(l,/t)}, i=0,
(26)

where A=A+p, g,0,0)=0, g3 pu)=c)—puR+v5(@] and
V3 (i):=V5, ()= V$,(i—1) for i > 0. Define p,,(i) as the largest minimizer
in the optimality equation above. Under the condition that c(u) is
either continuous or increasing and left-continuous and h(i) = hi
for some positive constant h, Lippman (1975) shows that V3(i) is
convex in i and so the optimal service rate (i) is increasing in i.
However, it is not concerned how to compute (i) in the
literature.

Differently from the optimal arrival control discussed in Section
2.5, the minimization problem min, . 4 g5, (i, #) here is fit into the
cost minimization problem (21). Thus, given any function c(u), let
A’ be the subset of A and A” be the subset of A" according to those
in the last subsection. Since A is compact, both A" and A” are also
compact. So, from Theorem 4,

min g5 (i, u) = min g5(i, u) = min g5, u), i=0. (27)
neA pel neA”
Thus, we have the following proposition.

Proposition 4. V(i) is convex in i, the optimal service rate (i) is a
solution of c¢’(i) = R+ Vi (i) in A" and is increasing in i.
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The optimization problems similar to min; ,g%(i,4) and
min, . 2g,(i, ) happen often in the optimal control in queueing
systems, e.g., those studied in Stidham and Weber (1989), Jo and
Stidham (1983) and Altman and Nain (1993). The transformation
presented in this paper can be applied to these problems. So,
the conditions presented in them can be ignored. Moreover, the
computation of the optimal policies is not concerned in the
literature of queueing systems.

6. Conclusions

In this paper, we present a parametric revenue maximization
problem as a uniform framework for several problems studied in
the literature. We transform the problem into an equivalent well
structured one in which the revenue function is regular (increas-
ing, continuous and concave), and so the problem becomes
analytically tractable. Hence, we no longer need the usual assump-
tions presented in the literature. We apply this transformation
method to study a continuous time revenue management without
the usual assumptions and we get the usual results. An example is
used to illustrate our method. Hence, we show the robustness of
the monotone properties to the demand function. The transforma-
tion is also used to study a parametric cost minimization problem.
We transform two optimal control problems of arrival rate and
service rate in queueing systems to be analytically tractable, which
has not been concerned in the literature. We also apply the
transformation method to a supply chain with price-only contract.

Further research may include applying this transformation to
other areas on revenue maximization problems, for example, in
auctions where IGFR is used. Also, it may be interesting to relax
assumptions and/or improve results for the other maximization
problems in revenue management, e.g., those discussed in Sec-
tions 3-5 in Gallego and van Ryzin (1994), and in the optimal
control of other queueing systems.
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